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Improved protein structure prediction using 
potentials from deep learning

Andrew W. Senior1,4*, Richard Evans1,4, John Jumper1,4, James Kirkpatrick1,4, Laurent Sifre1,4, 
Tim Green1, Chongli Qin1, Augustin Žídek1, Alexander W. R. Nelson1, Alex Bridgland1,  
Hugo Penedones1, Stig Petersen1, Karen Simonyan1, Steve Crossan1, Pushmeet Kohli1,  
David T. Jones2,3, David Silver1, Koray Kavukcuoglu1 & Demis Hassabis1

Protein structure prediction can be used to determine the three-dimensional shape of 
a protein from its amino acid sequence1. This problem is of fundamental importance 
as the structure of a protein largely determines its function2; however, protein 
structures can be difficult to determine experimentally. Considerable progress has 
recently been made by leveraging genetic information. It is possible to infer which 
amino acid residues are in contact by analysing covariation in homologous 
sequences, which aids in the prediction of protein structures3. Here we show that we 
can train a neural network to make accurate predictions of the distances between 
pairs of residues, which convey more information about the structure than contact 
predictions. Using this information, we construct a potential of mean force4 that can 
accurately describe the shape of a protein. We find that the resulting potential can be 
optimized by a simple gradient descent algorithm to generate structures without 
complex sampling procedures. The resulting system, named AlphaFold, achieves high 
accuracy, even for sequences with fewer homologous sequences. In the recent Critical 
Assessment of Protein Structure Prediction5 (CASP13)—a blind assessment of the state 
of the field—AlphaFold created high-accuracy structures (with template modelling 
(TM) scores6 of 0.7 or higher) for 24 out of 43 free modelling domains, whereas the 
next best method, which used sampling and contact information, achieved such 
accuracy for only 14 out of 43 domains. AlphaFold represents a considerable advance 
in protein-structure prediction. We expect this increased accuracy to enable insights 
into the function and malfunction of proteins, especially in cases for which no 
structures for homologous proteins have been experimentally determined7.

Proteins are at the core of most biological processes. As the function of 
a protein is dependent on its structure, understanding protein struc-
tures has been a grand challenge in biology for decades. Although 
several experimental structure determination techniques have been 
developed and improved in accuracy, they remain difficult and time-
consuming2. As a result, decades of theoretical work has attempted to 
predict protein structures from amino acid sequences.

CASP5 is a biennial blind protein structure prediction assessment 
run by the structure prediction community to benchmark progress in 
accuracy. In 2018, AlphaFold joined 97 groups from around the world in 
entering CASP138. Each group submitted up to 5 structure predictions 
for each of 84 protein sequences for which experimentally determined 
structures were sequestered. Assessors divided the proteins into 104 
domains for scoring and classified each as being amenable to template-
based modelling (TBM, in which a protein with a similar sequence has 
a known structure, and that homologous structure is modified in 
accordance with the sequence differences) or requiring free model-
ling (FM, in cases in which no homologous structure is available), with 

an intermediate (FM/TBM) category. Figure 1a shows that AlphaFold 
predicts more FM domains with high accuracy than any other system, 
particularly in the 0.6–0.7 TM-score range. The TM score—ranging 
between 0 and 1—measures the degree of match of the overall (back-
bone) shape of a proposed structure to a native structure. The assessors 
ranked the 98 participating groups by the summed, capped z-scores of 
the structures, separated according to category. AlphaFold achieved 
a summed z-score of 52.8 in the FM category (best-of-five) compared 
with 36.6 for the next closest group (322). Combining FM and TBM/FM 
categories, AlphaFold scored 68.3 compared with 48.2. AlphaFold is 
able to predict previously unknown folds to high accuracy (Fig. 1b). 
Despite using only FM techniques and not using templates, AlphaFold 
also scored well in the TBM category according to the assessors’ for-
mula 0-capped z-score, ranking fourth for the top-one model or first 
for the best-of-five models. Much of the accuracy of AlphaFold is due 
to the accuracy of the distance predictions, which is evident from the 
high precision of the corresponding contact predictions (Fig. 1c and 
Extended Data Fig. 2a).
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The most-successful FM approaches thus far9–11 have relied on frag-
ment assembly. In these approaches, a structure is created through 
a stochastic sampling process—such as simulated annealing12—that 
minimizes a statistical potential that is derived from summary statistics 
extracted from structures in the Protein Data Bank (PDB)13. In fragment 
assembly, a structure hypothesis is repeatedly modified, typically by 
changing the shape of a short section while retaining changes that lower 
the potential, ultimately leading to low potential structures. Simu-
lated annealing requires many thousands of such moves and must be 
repeated many times to have good coverage of low-potential structures.

In recent years, the accuracy of structure predictions has improved 
through the use of evolutionary covariation data14 that are found in sets 
of related sequences. Sequences that are similar to the target sequence 
are found by searching large datasets of protein sequences derived 
from DNA sequencing and aligned to the target sequence to generate 
a multiple sequence alignment (MSA). Correlated changes in the posi-
tions of two amino acid residues across the sequences of the MSA can be 
used to infer which residues might be in contact. Contacts are typically 
defined to occur when the β-carbon atoms of 2 residues are within 8 Å 
of one another. Several methods15–18, including neural networks19–22, 
have been used to predict the probability that a pair of residues is in 
contact based on features computed from MSAs. Contact predictions 
are incorporated in structure predictions by modifying the statistical 
potential to guide the folding process to structures that satisfy more 
of the predicted contacts11,23. Other studies24,25 have used predictions 
of the distance between residues, particularly for distance geometry 
approaches26–28. Neural network distance predictions without covari-
ation features were used to make the evolutionary pairwise distance-
dependent statistical potential25, which was used to rank structure 
hypotheses. In addition, the QUARK pipeline11 used a template-based 
distance-profile restraint for TBM.

In this study, we present a deep-learning approach to protein struc-
ture prediction, the stages of which are illustrated in Fig. 2a. We show 
that it is possible to construct a learned, protein-specific potential 
by training a neural network (Fig. 2b) to make accurate predictions 
about the structure of the protein given its sequence, and to predict 
the structure itself accurately by minimizing the potential by gradient 
descent (Fig. 2c). The neural network predictions include backbone 
torsion angles and pairwise distances between residues. Distance 
predictions provide more specific information about the structure 
than contact predictions and provide a richer training signal for the 

neural network. By jointly predicting many distances, the network 
can propagate distance information that respects covariation, local 
structure and residue identities of nearby residues. The predicted 
probability distributions can be combined to form a simple, principled 
protein-specific potential. We show that with gradient descent, it is 
simple to find a set of torsion angles that minimizes this protein-specific 
potential using only limited sampling. We also show that whole chains 
can be optimized simultaneously, avoiding the need to segment long 
proteins into hypothesized domains that are modelled independently 
as is common practice (see Methods).

The central component of AlphaFold is a convolutional neural 
network that is trained on PDB structures to predict the distances 
dij between the Cβ atoms of pairs, ij, of residues of a protein. On the 
basis of a representation of the amino acid sequence, S, of a protein 
and features derived from the MSA(S) of that sequence, the network, 
which is similar in structure to those used for image-recognition tasks29, 
predicts a discrete probability distribution P(dij|S, MSA(S)) for every 
ij pair in any 64 × 64 region of the L × L distance matrix, as shown in 
Fig. 2b. The full set of distance distribution predictions constructed 
by combining such predictions that covers the entire distance map is 
termed a distogram (from distance histogram). Example distogram 
predictions for one CASP protein, T0955, are shown in Fig. 3c, d. The 
modes of the distribution (Fig. 3c) can be seen to closely match the 
true distances (Fig. 3b). Example distributions for all distances to one 
residue (residue 29) are shown in Fig. 3d. We found that the predictions 
of the distance correlate well with the true distance between residues 
(Fig. 3e). Furthermore, the network also models the uncertainty in its 
predictions (Fig. 3f). When the s.d. of the predicted distribution is low, 
the predictions are more accurate. This is also evident in Fig. 3d, in 
which more confident predictions of the distance distribution (higher 
peak and lower s.d. of the distribution) tend to be more accurate, with 
the true distance close to the peak. Broader, less-confidently predicted 
distributions still assign probability to the correct value even when it 
is not close to the peak. The high accuracy of the distance predictions 
and consequently the contact predictions (Fig. 1c) comes from a com-
bination of factors in the design of the neural network and its training, 
data augmentation, feature representation, auxiliary losses, cropping 
and data curation (see Methods).

To generate structures that conform to the distance predictions, 
we constructed a smooth potential Vdistance by fitting a spline to the 
negative log probabilities, and summing across all of the residue pairs 
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Fig. 1 | The performance of AlphaFold in the CASP13 assessment. a, Number 
of FM (FM + FM/TBM) domains predicted for a given TM-score threshold for 
AlphaFold and the other 97 groups. b, For the six new folds identified by the 
CASP13 assessors, the TM score of AlphaFold was compared with the other 
groups, together with the native structures. The structure of T1017s2-D1 is not 
available for publication. c, Precisions for long-range contact prediction in 

CASP13 for the most probable L, L/2 or L/5 contacts, where L is the length of the 
domain. The distance distributions used by AlphaFold in CASP13, thresholded 
to contact predictions, are compared with the submissions by the two best-
ranked contact prediction methods in CASP13: 498 (RaptorX-Contact26) and 
032 (TripletRes32) on ‘all groups’ targets, with updated domain definitions for 
T0953s2.
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(see Methods). We parameterized protein structures by the backbone 
torsion angles (φ, ψ) of all residues and build a differentiable model of 
protein geometry x = G(φ, ψ) to compute the Cβ coordinates, xi for all 
residues i and thus the inter-residue distances, dij = ||xi − xj||, for each 
structure, and express Vdistance as a function of φ and ψ. For a protein with 
L residues, this potential accumulates L2 terms from marginal distribu-
tion predictions. To correct for the overrepresentation of the prior, we 
subtract a reference distribution30 from the distance potential in the log 
domain. The reference distribution models the distance distributions 
P(dij|length) independent of the protein sequence and is computed 
by training a small version of the distance prediction neural network 
on the same structures, without sequence or MSA input features.  
A separate output head of the contact prediction network is trained to 
predict discrete probability distributions of backbone torsion angles 
P(φi,ψi|S, MSA(S)). After fitting a von Mises distribution, this is used to 
add a smooth torsion modelling term, Vtorsion, to the potential. Finally, 
to prevent steric clashes, we add the Vscore2_smooth score of Rosetta9 to the 
potential, as this incorporates a van der Waals term. We used multipli-
cative weights for each of the three terms in the potential; however, no 
combination of weights noticeably outperformed equal weighting.

As all of the terms in the combined potential Vtotal(φ,  ψ) are  
differentiable functions of (φ, ψ), it can be optimized with respect to 
these variables by gradient descent. Here we use L-BFGS31. Structures 
are initialized by sampling torsion values from P(φi, ψi|S, MSA(S)).  
Figure 2c illustrates a single gradient descent trajectory that minimizes 
the potential, showing how this greedy optimization process leads to 
increasing accuracy and large-scale conformation changes. The sec-
ondary structure is partly set by the initialization from the predicted 
torsion angle distributions. The overall accuracy (TM score) improves 
quickly and after a few hundred steps of gradient descent the accuracy 
of the structure has converged to a local optimum of the potential.

We repeated the optimization from sampled initializations,  
leading to a pool of low-potential structures from which further struc-
ture initializations are sampled, with added backbone torsion noise 
(‘noisy restarts’), leading to more structures to be added to the pool. 
After only a few hundred cycles, the optimization converges and the 
lowest potential structure is chosen as the best candidate structure.  
Figure 2e shows the progress in the accuracy of the best-scoring struc-
tures over multiple restarts of the gradient descent process, show-
ing that after a few iterations the optimization has converged. Noisy 
restarts enable structures with a slightly higher TM score to be found 
than when continuing to sample from the predicted torsion distribu-
tions (average of 0.641 versus 0.636 on our test set, shown in Extended 
Data Fig. 4).

Figure 4a shows that the distogram accuracy (measured using the 
local distance difference test (lDDT12) of the distogram; see Meth-
ods) correlates well with the TM score of the final realized structures.  
Figure 4b shows the effect of changing the construction of the potential. 
Removing the distance potential entirely gives a TM score of 0.266. 
Reducing the resolution of the distogram representation below six bins 
by averaging adjacent bins causes the TM score to degrade. Removing 
the torsion potential, reference correction or Vscore2_smooth degrades the 
accuracy only slightly. A final ‘relaxation’ (side-chain packing inter-
leaved with gradient descent) with Rosetta9, using a combination of 
the Talaris2014 potential and a spline fit of our reference-corrected 
distance potential adds side-chain atom coordinates, and yields a small 
average improvement of 0.007 TM score.

We show that a carefully designed deep-learning system can pro-
vide accurate predictions of inter-residue distances and can be used 
to construct a protein-specific potential that represents the protein 
structure. Furthermore, we show that this potential can be optimized  
with gradient descent to achieve accurate structure predictions.  
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Fig. 2 | The folding process illustrated for CASP13 target T0986s2. CASP 
target T0986s2, L = 155, PDB: 6N9V. a, Steps of structure prediction. b, The 
neural network predicts the entire L × L distogram based on MSA features, 
accumulating separate predictions for 64 × 64-residue regions. c, One iteration 
of gradient descent (1,200 steps) is shown, with the TM score and root mean 
square deviation (r.m.s.d.) plotted against step number with five snapshots of 
the structure. The secondary structure (from SST33) is also shown (helix in blue, 
strand in red) along with the native secondary structure (Nat.), the secondary 

structure prediction probabilities of the network and the uncertainty in 
torsion angle predictions (as κ−1 of the von Mises distributions fitted to the 
predictions for φ and ψ). While each step of gradient descent greedily lowers 
the potential, large global conformation changes are effected, resulting in a 
well-packed chain. d, The final first submission overlaid on the native structure 
(in grey). e, The average (across the test set, n = 377) TM score of the lowest-
potential structure against the number of repeats of gradient descent per 
target (log scale).
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Whereas FM predictions only rarely approach the accuracy of experi-
mental structures, the CASP13 assessment shows that the AlphaFold 
system achieves unprecedented FM accuracy and that this FM method 

can match the performance of template-modelling approaches without 
using templates and is starting to reach the accuracy needed to provide 
biological insights (see Methods). We hope that the methods we have 
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e, The mode of the predicted distance plotted against the true distance for all 
residue pairs with distances ≤22 Å, excluding distributions with s.d. > 3.5 Å 
(n = 28,678). Data are mean ± s.d. calculated for 1 Å bins. f, The error of the mode 
distance prediction versus the s.d. of the distance distributions, excluding 
pairs with native distances >22 Å (n = 61,872). Data are mean ± s.d. are shown for 
0.25 Å bins. The true distance matrix and distogram for T0990 are shown in 
Extended Data Fig. 2b, c.
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described can be developed further and applied to benefit all areas 
of protein science with more accurate predictions for sequences of 
unknown structure.
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Methods

Extended Data Figure 1a shows the steps involved in MSA construction, 
feature extraction, distance prediction, potential construction and 
structure realization.

Tools
The following tools and dataset versions were used for the CASP sys-
tem and for subsequent experiments: PDB 15 March 2018; CATH 16 
March 2018; HHblits based on v.3.0-beta.3 (three iterations, E = 1 × 10−3); 
HHpred web server; Uniclust30 2017-10; PSI-BLAST v.2.6.0 nr dataset 
(as of 15 December 2017) (three iterations, E = 1 × 10−3); SST web server 
(March 2019); BioPython v.1.65; Rosetta v.3.5; PyMol 2.2.0 for structure 
visualization; TM-align 20160521.

Data
Our models are trained on structures extracted from the PDB13.  
We extract non-redundant domains by utilizing the CATH34 35% 
sequence similarity cluster representatives. This generated 31,247 
domains, which were split into train and test sets (29,427 and 1,820 
proteins, respectively), keeping all domains from the same homologous 
superfamily (H-level in the CATH classification) in the same partition.  
The CATH superfamilies of FM domains from CASP11 and  
CASP12 were also excluded from the training set. From the test set, we 
took—at random—a single domain per homologous superfamily to  
create the 377 domain subset used for the results presented here. We 
note that accuracies for this set are higher than for the CASP13 test 
domains.

CASP13 submission results are drawn from the CASP13 results pages 
with additional results shown for the CASP13 dataset for ‘all groups’ 
chains, scored on CASP13 PDB files, by CASP domain definitions. Con-
tact prediction accuracies were recomputed from the group 032 and 
498 submissions (as RR files), compared with the distogram predictions 
used by AlphaFold for CASP13 submissions. Contact prediction prob-
abilities were obtained from the distograms by summing the probability 
mass in each distribution below 8 Å.

For each training sequence, we searched for and aligned to the train-
ing sequence similar protein sequences in the Uniclust3035 dataset 
with HHblits36 and used the returned MSA to generate profile features 
with the position-specific substitution probabilities for each residue 
as well as covariation features—the parameters of a regularized pseu-
dolikelihood-trained Potts model similar to CCMpred16. CCMPred uses 
the Frobenius norm of the parameters, but we feed both this norm  
(1 feature) and the raw parameters (484 features) into the network for 
each residue pair ij. In addition, we provide the network with features 
that explicitly represent gaps and deletions in the MSA. To make the 
network better able to make predictions for shallow MSAs, and as a 
form of data augmentation, we take a sample of half the sequences 
from the the HHblits MSA before computing the MSA-based features. 
Our training set contains 10 such samples for each domain. We extract 
additional profile features using PSI-BLAST37.

The distance prediction neural network was trained with the follow-
ing input features (with the number of features indicated in brackets).

• Number of HHblits alignments (scalar).
•  Sequence-length features: 1-hot amino acid type (21 features);  

profiles: PSI-BLAST (21 features), HHblits profile (22 features),  
non-gapped profile (21 features), HHblits bias, HMM profile (30 
features), Potts model bias (22 features); deletion probability (1 fea-
ture); residue index (integer index of residue number, consecutive 
except for multi-segment domains, encoded as 5 least-significant 
bits and a scalar).

•  Sequence-length-squared features: Potts model parameters  
(484 features, fitted with 500 iterations of gradient descent using  
Nesterov momentum 0.99, without sequence reweighting);  
Frobenius norm (1 feature); gap matrix (1 feature).

The z-scores were taken from the results CASP13 assessors (http://
predictioncenter.org/casp13/zscores_final.cgi?formula=assessors).

Distogram prediction. The inter-residue distances are predicted by 
a deep neural network. The architecture is a deep two-dimensional 
dilated convolutional residual network. Previously, a two-dimensional 
residual network was used that was preceded by one-dimensional em-
bedding layers for contact prediction21. Our network is two-dimensional 
throughout and uses 220 residual blocks29 with dilated convolutions38. 
Each residual block, illustrated in Extended Data Fig. 1b, consists of a 
sequence of neural network layers39 that interleave three batchnorm 
layers; two 1 × 1 projection layers; a 3 × 3 dilated convolution layer and 
exponential linear unit (ELU)40 nonlinearities. Successive layers cycle 
through dilations of 1, 2, 4, 8 pixels to allow propagation of informa-
tion quickly across the cropped region. For the final layer, a position- 
specific bias was used, such that the biases were indexed by residue-
offset (capped at 32) and bin number.

The network is trained with stochastic gradient descent using a  
cross-entropy loss. The target is a quantification of the distance 
between the Cβ atoms of the residues (or Cα for glycine). We divide 
the range 2–22 Å into 64 equal bins. The input to the network consists 
of a two-dimensional array of features in which each i,j feature is the 
concatenation of the one-dimensional features for both i and j as well 
as the two-dimensional features for i,j.

Individual training runs were cross-validated with early stopping 
using 27 CASP11 FM domains as a validation set. Models were selected 
by cross-validation on 27 CASP12 FM domains.

Neural network hyperparameters
•  7 groups of 4 blocks with 256 channels, cycling through dilations 

1, 2, 4, 8.
•  48 groups of 4 blocks with 128 channels, cycling through dilations 

1, 2, 4, 8.
• Optimization: synchronized stochastic gradient descent
• Batch size: batch of 4 crops on each of 8 GPU workers.
• 0.85 dropout keep probability.
• Nonlinearity: ELU.
• Learning rate: 0.06.
•  Auxiliary loss weights: secondary structure: 0.005; accessible sur-

face area: 0.001. These auxiliary losses were cut by a factor 10 after 
100 000 steps.

•  Learning rate decayed by 50% at 150,000, 200,000, 250,000 and 
350,000 steps.

• Training time: about 5 days for 600,000 steps.

Cropped distograms. To constrain memory usage and avoid overfit-
ting, the network was always trained and tested on 64 × 64 regions 
of the distance matrix, that is, the pairwise distances between 64 
consecutive residues and another group of 64 consecutive residues. 
For each training domain, the entire distance matrix was split into 
non-overlapping 64 × 64 crops. By training off-diagonal crops, the 
interaction between residues that are further apart than 64 residues 
could be modelled. Each crop consisted of the distance matrix that 
represented the juxtaposition of two 64-residue fragments. It has 
previously been shown22 that contact prediction needs only a limited 
context window. We note that the distance predictions close to the 
diagonal i = j, encode predictions of the local structure of the protein, 
and for any cropped region the distances are governed by the local 
structure of the two fragments represented by the i and j ranges of the 
crop. Augmenting the inputs with the on-diagonal two-dimensional 
input features that correspond to both the i and j ranges provides 
additional information to predict the structure of each fragment and 
thus the distances between them. It can be seen that if the fragment 
structures can be well predicted (for instance, if they are confidently 
predicted as helices or sheets), then the prediction of a single contact 
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between the fragments will strongly constrain the distances between 
all other pairs.

Randomizing the offset of the crops each time a domain is used in 
training leads to a form of data augmentation in which a single pro-
tein can generate many thousands of different training examples. 
This is further enhanced by adding noise proportional to the ground-
truth resolution to the atom coordinates, leading to variation in the  
target distances. Data augmentation (MSA subsampling and coordinate 
noise), together with dropout41, prevents the network from overfitting 
to the training data.

To predict the distance distribution for all L × L residue pairs, many 
64 × 64 crops are combined. To avoid edge effects, several such tilings 
are produced with different offsets and averaged together, with a heav-
ier weighting for the predictions near the centre of the crop. To improve 
accuracy further, predictions from an ensemble of four separate  
models, trained independently with slightly different hyperparameters, 
are averaged together. Extended Data Figure 2b, c shows examples of 
the true distances and the mode of the distogram predictions for a 
three-domain CASP13 target, T0990.

As the network has a rich representation capable of incorporat-
ing both profile and covariation features of the MSA, we argue that 
the network can be used to predict the secondary structure directly.  
By mean- and max- pooling the two-dimensional activations of the 
penultimate layer of the network separately in both i and j, we add an 
additional one-dimensional output head to the network that predicts 
eight-class secondary structure labels as computed by DSSP42 for each 
residue in j and i. The resulting accuracy of the Q3 (distinguishing the 
three helix/sheet/coil classes) predictions is 84%, which is comparable 
to the state-of-the-art predictions43. The relative accessible surface 
area (ASA) of each residue can also be predicted.

The one-dimensional pooled activations are also used to predict the 
marginal Ramachandran distributions, P(φi, ψi|S,MSA(S)), indepen-
dently for each residue, as a discrete probability distribution approxi-
mated to 10° (1,296 bins). In practice during CASP13 we used distograms 
from a network that was trained to predict distograms, secondary 
structure and ASA. Torsion predictions were taken from a second similar 
network trained to predict distograms, secondary structure, ASA and 
torsions, as the former had been more thoroughly validated.

Extended Data Figure 3b shows that an important factor in the accu-
racy of the distograms (as has previously been found with contact 
prediction systems) is Neff, the effective number of sequences in the 
MSA20. This is the number of sequences found in the MSA, discounting 
redundancy at the 62% sequence identity level, which we then divide by 
the number of residues in the target, and is an indication of the amount 
of covariation information in the MSA.

Distance potential. The distogram probabilities are estimated for 
discrete distance bins; therefore, to construct a differentiable potential, 
the distribution is interpolated with a cubic spline. Because the final 
bin accumulates probability mass from all distances beyond 22 Å, and 
as greater distances are harder to predict accurately, the potential was 
only fitted up to 18 Å (determined by cross-validation), with a constant 
extrapolation thereafter. Extended Data Figure 3c (bottom) shows the 
effect of varying the resolution of the distance histograms on structure 
accuracy.

To predict a reference distribution, a similar model is trained on the 
same dataset. The reference distribution is not conditioned on the 
sequence, but to account for the atoms between which we are predict-
ing distances, we do provide a binary feature δαβ to indicate whether 
the residue is a glycine (Cα atom) or not (Cβ) and the overall length of 
the protein.

A distance potential is created from the negative log likelihood of 
the distances, summed over all pairs of residues i, j (Supplementary 
equation (1)). With a reference state, this becomes the log-likelihood 

ratio of the distances under the full conditional model and under the 
background model (Supplementary equation (2)).

Torsions are modelled as a negative log likelihood under the pre-
dicted torsion distributions. As we have marginal distribution predic-
tions, each of which can be multimodal, it can be difficult to jointly 
optimize the torsions. To unify all of the probability mass, at the cost 
of modelling fidelity of multimodal distributions, we fitted a unimodal 
von Mises distribution to the marginal predictions. This potential was 
summed over all residues i (Supplementary equation (3)).

Finally, to prevent steric clashes, a van der Waals term was introduced 
through the use of Rosetta’s Vscore2_smooth. Extended Data Figure 3c (top) 
shows the effect on the accuracy of the structure prediction of different 
terms in the potential.

Structure realization by gradient descent. To realize structures that 
minimize the constructed potential, we created a differentiable model 
of ideal protein backbone geometry, giving backbone atom coordinates 
as a function of the torsion angles (φ, ψ): x = G(φ, ψ). The complete 
potential to be minimized is then the sum of the distance, torsion and 
score2_smooth (Supplementary equation (4)). Although there is no 
guarantee that these potentials have equivalent scale, scaling param-
eters on the terms were introduced and chosen by cross-validation 
on CASP12 FM domains. In practice, equal weighting for all terms was 
found to lead to the best results.

As every term in Vtotal is differentiable with respect to the torsion 
angles, given an initial set of torsions φ, ψ, which can be sampled 
from the predicted torsion marginals, we can minimize Vtotal using a 
gradient descent algorithm, such as L-BFGS31. The optimized struc-
ture is dependent on the initial conditions, so we repeat the optimi-
zation multiple times with different initializations. A pool of the 20 
lowest-potential structures is maintained and once full, we initialize 
90% of trajectories from those with 30° noise added to the backbone  
torsions (the remaining 10% still being sampled from the predicted  
torsion distributions). In CASP13, we obtained 5,000 optimization 
runs for each chain. Figure 2c shows the change in TM score against  
the number of restarts per protein. As longer chains take longer to 
optimize, this work load was balanced across (50 + L)/2 parallel work-
ers. Extended Data Figure 4 shows similar curves against computation 
time, always comparing sampling starting torsions from the predicted  
marginal distributions with restarting from the pool of previous  
structures.

Accuracy. We compare the final structures to the experimentally  
determined structures to measure their accuracy using metrics such 
as TM score, GDT_TS (global distance test, total score44) and r.m.s.d. 
All of these accuracy measures require geometric alignment between 
the candidate structure and the experimental structure. An alterna-
tive accuracy measure that requires no alignment is the lDDT45, which 
measures the percentage of native pairwise distances Dij under 15 Å, 
with sequence offsets ≥ r residues, that are realized in a candidate struc-
ture (as dij) within a tolerance of the true value, averaging across toler-
ances of 0.5, 1, 2 and 4 Å (without stereochemical checks), as shown in  
Supplementary equation (5)).

As the distogram predicts pairwise distances, we can introduce dis-
togram lDDT (DLDDT), a measure similar to lDDT that is computed 
directly from the probabilities of the distograms, as shown in Sup-
plementary equation (6)). As distances between residues nearby in 
the sequence are often short, easier to predict and are not critical in 
determining the overall fold topology, we set r = 12, considering only 
those distances for residues with a sequence separation ≥12. Because 
we predict Cβ distances, for this study we computed both lDDT and 
DLDDT using the Cβ distances. Extended Data Figure 3a shows that 
DLDDT12 has high correlation (Pearson’s r = 0.92 for CASP13) with the 
lDDT12 of the realized structures.



Full chains without domain segmentation. Parameterizing proteins 
of length L by two torsion angles per residue, the dimension of the 
space of structures grows as 2L; thus, searching for structures of large 
proteins becomes much more difficult. Traditionally this problem 
was addressed by splitting longer protein chains into pieces—termed 
domains—that fold independently. However, domain segmentation 
from the sequence alone is itself difficult and error-prone. For this 
study, we avoided domain segmentation and folded entire chains. 
Typically, MSAs are based on a given domain segmentation; however, 
we used a sliding window approach, computing a full-chain MSA to 
predict a baseline full-sequence distogram. We then computed MSAs 
for subsequences of the chain, trying windows of size 64, 128, 256 with 
offsets at multiples of 64. Each of these MSAs gave rise to an individual 
distogram that corresponded to an on-diagonal square of the full-chain 
distogram. We averaged all of these distograms together, weighted by 
the number of sequences in the MSA to produce an average full-chain 
distogram that is more accurate in regions in which many alignments 
can be found. For the CASP13 assessment, full chains were relaxed with 
Rosetta relax with a potential of VTalaris2014 + 0.2 Vdistance (weighting deter-
mined by cross-validation) and submissions from all of the systems 
were ranked based on this potential.

CASP13 results. For CASP13, the five AlphaFold submissions were from 
three different systems, all of which used potentials based on the neural 
network distance predictions. The systems that are not described here 
are described in a separate paper8. Before T0975, two systems based on 
simulated annealing and fragment assembly (and using 40-bin distance 
distributions) were used. From T0975 onward, newly trained 64-bin 
distogram predictions were used and structures were generated by the 
gradient descent system described here (three independent runs) as 
well as one of the fragment assembly systems (five independent runs). 
The five submissions were chosen from these eight structures (the 
lowest potential structure generated by each independent run) with 
the first submission (top-one) being the lowest-potential structure 
generated by gradient descent. The remaining four submissions were 
the four best other structures, with the fifth being a gradient descent 
structure if none had been chosen for position 2, 3 or 4. All submis-
sions for T0999 were generated by gradient descent. Extended Data 
Figure 5a shows the methods used for each submission, comparing with 
‘back-fill’ structures generated by a single run of gradient descent for 
targets before T0975. Extended Data Figure 5b shows that the gradient 
descent method that was used later in CASP performed better than 
the fragment assembly method, in each category. Extended Data Fig-
ure 5c compares the accuracy of the AlphaFold submissions for FM and  
FM/TBM domains with the next best group 322. The assessors of CASP13 
FM used expert visual inspection46 to choose the best submissions for 
each target and found that AlphaFold had nearly twice as many best 
models as the next best group.

Biological relevance of AlphaFold predictions. There is a wide range 
of uses of predicted structures, all with different accuracy require-
ments, from generally understanding the fold shape to understand-
ing detailed side-chain configurations in binding regions. Contact 
predictions alone can guide biological insights47, for instance, to 
target mutations to destabilize the protein. Figure 1c and Extended 
Data Fig. 2a show that the accuracy of the contact predictions from 
AlphaFold exceeds that of the state-of-the-art predictions. In Extended 
Data Figs. 6–8, we present further results that show that the accuracy 
improvements of AlphaFold lead to more accurate interpretations of 
function (Extended Data Fig. 6); better interface prediction for pro-
tein–protein interactions (Extended Data Fig. 7); better binding pocket 
prediction (Extended Data Fig. 8) and improved molecular replacement 
in crystallography.

Thus far only template-based predictions have been able to deliver 
the most accurate predictions. Although AlphaFold is able to match 
TBM without using templates, and in some cases outperform other 
methods (for example, T0981-D5, 72.8 GDT_TS, and T0957s1-D2, 88.0 
GDT_TS, two TBM-hard domains for which the top-one model of Alpha-
Fold is 12 GDT_TS better than any other top-one submission), the accu-
racy for FM targets still lags behind that for TBM targets and can still 
not be relied on for the detailed understanding of hard structures. In an 
analysis of the performance of CASP13 TBM predictions for molecular 
replacement, another study48 reported that the AlphaFold predic-
tions (raw coordinates, without B-factors) led to a marginally greater  
log-likelihood gain than those of any other group, indicating that  
these improved structures can assist in phasing for X-ray crystallog-
raphy.

Interpretation of distogram neural network. We have shown that 
the deep distance prediction neural network achieves high accuracy,  
but we would like to understand how the network arrives at its dis-
tance predictions and—in particular—to understand how the inputs 
to the model affect the final prediction. This might improve our un-
derstanding of the folding mechanisms or suggest improvements to 
the model. However, deep neural networks are complex nonlinear 
functions of their inputs, and so this attribution problem is difficult, 
under-specified and an on-going topic of research. Even so, there 
are a number of methods for such analysis: here we apply Integrated 
Gradients49 to our trained distogram network to indicate the location 
of input features that affect the network’s predictions of a particular 
distance.

In Extended Data Fig. 9, plots of summed absolute Integrated Gradi-
ent, ∑c|SI,J

i,j,c|, (defined in Supplementary equations (7)–(9)) are shown 
for selected I,J output pairs in T0986s2; and in Extended Data Fig. 10, the 
top-10 highest attribution input pairs for each output pair are shown 
on top of the top-one predicted structure of AlphaFold. The attribution 
maps are sparse and highly structured, closely reflecting the predicted 
geometry of the protein. For the four in-contact pairs presented (1, 2, 
3, 5), all of the highest attribution pairs are pairs within or between the 
secondary structure that one or both of the output pair(s) are members 
of. In 1, the helix residues are important as well as connections between 
the strands that follow either end of the helix, which might indicate 
strain on the helix. In 2, all of the most important residue pairs connect 
the same two strands, whereas in 3, a mixture of inter-strand pairs and 
strand residues is most salient. In 5, the most important pairs involve 
the packing of nearby secondary structure elements to the strand and 
helix. For the non-contacting pair, 4, the most important input pairs 
are the residues that are geometrically between I and J in the predicted 
protein structure. Furthermore, most of the high-attribution input 
pairs are themselves in contact.

As the network is tasked with predicting the spatial geometry, with no 
structure available at the input, these patterns of interaction indicate 
that the network is using intermediate predictions to discover impor-
tant interactions and channelling information from related residues 
to refine the final prediction.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Our training, validation and test data splits (CATH domain codes) are 
available from https://github.com/deepmind/deepmind-research/tree/
master/alphafold_casp13. The following versions of public datasets 
were used in this study: PDB 2018-03-15; CATH 2018-03-16; Uniclust30 
2017-10; and PSI-BLAST nr dataset (as of 15 December 2017).
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Code availability
Source code for the distogram, reference distogram and torsion  
prediction neural networks, together with the neural network weights 
and input data for the CASP13 targets are available for research and 
non-commercial use at https://github.com/deepmind/deepmind-
research/tree/master/alphafold_casp13. We make use of several  
open-source libraries to conduct our experiments, particularly 
HHblits36, PSI-BLAST37 and the machine-learning framework Tensor-
Flow (https://github.com/tensorflow/tensorflow) along with the Ten-
sorFlow library Sonnet (https://github.com/deepmind/sonnet), which 
provides implementations of individual model components50. We also 
used Rosetta9 under license.
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Extended Data Fig. 1 | Schematics of the folding system and neural network. 
a, The overall folding system. Feature extraction stages (constructing the MSA 
using sequence database search and computing MSA-based features) are 
shown in yellow; the structure-prediction neural network in green; potential 
construction in red; and structure realization in blue. b, The layers used in one 

block of the deep residual convolutional network. The dilated convolution is 
applied to activations of reduced dimension. The output of the block is added 
to the representation from the previous layer. The bypass connections of the 
residual network enable gradients to pass back through the network 
undiminished, permitting the training of very deep networks.
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Extended Data Fig. 2 | CASP13 contact precisions. a, Precisions (as shown in 
Fig. 1c) for long-range contact prediction in CASP13 for the most probable L, L/2 
or L/5 contacts, where L is the length of the domain. The distance distributions 
used by AlphaFold (AF) in CASP13, thresholded to contact predictions, are 
compared with submissions by the two best-ranked contact prediction 
methods in CASP13: 498 (RaptorX-Contact26) and 032 (TripletRes32), on ‘all 

groups’ targets, with updated domain definitions for T0953s2. b, c, True 
distances (b) and modes of the predicted distogram (c) for CASP13 target 
T0990. CASP divides this chain into three domains as shown (D3 is inserted in 
D2) for which there are 39, 36 and 42 HHblits alignments, respectively (from the 
CASP website).



Extended Data Fig. 3 | Analysis of structure accuracies. a, lDDT12 versus 
distogram lDDT12 (see Methods, ‘Accuracy’). The distogram accuracy predicts 
the lDDT of the realized structure well (particularly for medium- and long-range 
residue pairs, as well as the TM score as shown in Fig. 4a) for both CASP13 
(n = 500: 5 decoys for domains excluding T0999) and test (n = 377) datasets. 
Data are shown with Pearson’s correlation coefficients. b, DLDDT12 against the 
effective number of sequences in the MSA (Neff) normalized by sequence length 
(n = 377). The number of effective sequences correlates with this measure of 
distogram accuracy (r = 0.634). c, Structure accuracy measures, computed on 
the test set (n = 377), for gradient descent optimization of different forms of the 
potential. Top, removing terms in the potential, and showing the effect of 
following optimization with Rosetta relax. ‘P’ shows the significance of the 

potential giving different results from ‘Full’, for a two-tailed paired data t-test. 
‘Bins’ shows the number of bins fitted by the spline before extrapolation and 
the number in the full distribution. In CASP13, splines were fitted to the first 51 
of 64 bins. Bottom, reducing the resolution of the distogram distributions. The 
original 64-bin distogram predictions are repeatedly downsampled by a factor 
of 2 by summing adjacent bins, in each case with constant extrapolation 
beyond 18 Å (the last quarter of the bins). The two-level potential in the final 
row, which was designed to compare with contact predictions, is constructed 
by summing the probability mass below 8 Å and between 8 and 14 Å, with 
constant extrapolation beyond 14 Å. The TM scores in this table are plotted in 
Fig. 4b.
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Extended Data Fig. 4 | TM score versus per-target computation time 
computed as an average over the test set. Structure realization requires a 
modest computation budget, which can be parallelized over multiple 
machines. Full optimization with noisy restarts (orange) is compared with 
initialization from sampled torsions (blue). Computation is measured as the 

product of the number of (CPU-based) machines and time elapsed and can be 
largely parallelized. Longer targets take longer to optimize. Figure 2e shows 
how the TM score increases with the number of repeats of gradient descent. 
n = 377.



Extended Data Fig. 5 | AlphaFold CASP13 results. a, The TM score for each of 
the five AlphaFold CASP13 submissions are shown. Simulated annealing with 
fragment assembly entries are shown in blue. Gradient-descent entries are 
shown in yellow. Gradient descent was only used for targets T0975 and later, so 
to the left of the black line we also show the results for a single ‘back-fill’ run of 
gradient descent for each earlier target using the deployed system. T0999 
(1,589 residues) was manually segmented based on HHpred51 homology 
matching. b, Average TM scores of the AlphaFold CASP13 submissions  
(n = 104 domains), comparing the first model submitted, the best-of-five model 

(submission with highest GDT_TS), a single run of full-chain gradient descent  
(a CASP13 run for T0975 and later, back-fill for earlier targets) and a single 
CASP13 run of fragment assembly with domain segmentation (using a gradient 
descent submission for T0999). c, The formula-standardized (z) scores of the 
assessors for GDT TS + QCS52, best-of-five for CASP FM (n = 31) and FM/TBM 
(n = 12) domains comparing AlphaFold with the closest competitor (group 322), 
coloured by domain category. AlphaFold performs better (P = 0.0032, one-
tailed paired statistic t-test).
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Extended Data Fig. 6 | Correct fold identification by structural search in 
CATH. Often protein function can be inferred by finding homologous proteins 
of known function. Here we show that the FM predictions of AlphaFold give 
greater accuracy in a structure-based search for homologous domains in the 
CATH database. For each of the FM or TBM/FM domains, the top-one 
submission and ground truth are compared to all 30,744 CATH S40 non-
redundant domains with TM-align53. For the 36 domains for which there is a 

good ground-truth match (score > 0.5), we show the percentage of decoys for 
which a domain with the same CATH code (CATH in red, CA in green; CAT results 
are close to CATH results) as the top ground-truth match is in the top-k matches 
with score > 0.5. Curves are shown for AlphaFold and the next-best group (322). 
AlphaFold predictions determine the matching fold more accurately. 
Determination of the matching CATH domain can provide insights into the 
function of a new protein.



Extended Data Fig. 7 | Accuracy of predictions for interfaces. Protein–
protein interaction is an important domain for understanding protein function 
that has hitherto largely been limited to template-based models because of the 
need for high-accuracy predictions, although there has been moderate 
success54 in docking with predicted structures up to 6 Å r.m.s.d. This figure 
shows that the predictions by AlphaFold improve accuracy in the interface 
regions of chains in hetero-dimer structures and are probably better 
candidates for docking, although docking did not form part of the AlphaFold 

system and all submissions were for isolated chains rather than complexes. For 
the five all-groups heterodimer CASP13 targets, the full-atom r.m.s.d. values of 
the interface residues (residues with a ground-truth inter-chain heavy-atom 
distance <10 Å) are computed for the chain submissions of all groups (green), 
relative to the target complex. Results >8 Å are not shown. AlphaFold (blue) 
achieves consistently high accuracy interface regions and, for 4 out of 5 
targets, predicts interfaces below <5 Å for both chains.
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Extended Data Fig. 8 | Ligand pocket visualizations for T1011. T1011 (PDB 
6M9T) is the EP3 receptor bound to misoprostol-FA55. a, The native structure 
showing the ligand in a pocket. b, c, Submission 5 (78.0 GDT TS) by AlphaFold 
(b), made without knowledge of the ligand, shows a pocket more similar to the 

true pocket than that of the best other submission (322, model 3, 68.7 GDT TS) 
(c). Both submissions are aligned to the native protein using the same subset of 
residues from the helices close to the ligand pocket and visualized with the 
interior pocket together with the native ligand position.



Extended Data Fig. 9 | Attribution map of distogram network. The contact 
probability map of T0986s2, and the summed absolute value of the Integrated 
Gradient, ∑c|SI, J

i,j,c|, of the input two-dimensional features with respect to the 
expected distance between five different pairs of residues (I, J): (1) a helix self-

contact, (2) a long-range strand–strand contact, (3) a medium-range strand–
strand contact, (4) a non-contact and (5) a very long-range strand–strand 
contact. Each pair is shown as two red dots on the diagrams. Darker colours 
indicate a higher attribution weight.
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Extended Data Fig. 10 | Attribution shown on predicted structure. For 
T0986s2 (TM score 0.8), the top 10 input pairs, including self-pairs, with the 
highest attribution weight for each of the five output pairs shown in Extended 
Data Fig. 9, are shown as lines (or spheres for self-pairs) coloured by sensitivity, 

lighter green colours indicate more sensitive, and the output pair is shown as a 
blue line.
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