
Protein Folding in the Hydrophobic-Hydrophilic (HP) Model is
NP-Complete

Bonnie Berger* Tom Leightont

Abstract

One of the simplest and most popular biophysical mod-
els of protein folding is the hydrophobic-hydrophilic (HP)
model. The HP model abstracts the hydrophobic in-
teraction in protein folding by labeling the amino acids
as hydrophobic (H for nonpolar) or hydrophilic (P for
polar). Chains of amino acids are con6gured as self-
avoiding nalks on the 3D cubic lattice, where an opti-
mal conformation maximizes the number of adjacencies
between H’s. In this paper, the protein folding prob-
lem under the HP model on the cubic lattice is shown
to be NP-complete. This means that the protein fold-
ing problem belongs to a large set of problems that are
believed to be computationally intractable.

1 Introduction

One of the most widely studied models of protein folding
is the hydrophobic-hydrophilic (HP) model introduced
by Dii [6]- In the HP model, chains of amino acids
are configured as s&-avoiding walks on the 3D cubic
lattice (Le., adjacent amino acids of each chain lie on
adjacent lattice sites, and no site is occupied by more
than one amino acid). Based on the assumption that
the hydrophobic reactions make an important contribu-
tion to the free energy of the embedding, a protein is
modeled as a specific sequence of hydrophobic (H for
nonpolar) or hydrophilic (P for polar) monomers. An
optimal conformation maximizes the number of adja-
cencies between H’s.

The complexity of protein folding has remained open
for the major models of biological interest [2l, 4, 121.
Foremost among these models is the HP model [7] that
was introduced by biophysicists in 1985. The protein

l 2-359, Mathematics Dept. and Lab. for Computer Science,
MIT, Cambridge, MA 02139; phone: 617-253-4986; email:
babQtheory.lcs.m&xiu

+2-377,hlathematics Dept. and Lab. for Computer Science,
BEIT, Cambridge, hIA 02139

p&on to m&e digitauhard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copis
are not made or diiiuted for profit or c~mmid a~%F& the WY-
G&t notice, the title of the publication and its date appa. and n&e is
-&en that copy++ is by permission ofthe AChZ Inc. To copy ofhem’&
to rcpubtkh, to post on servers or to rediibute to lkki fc+res specific
permission mtior fee.
RECOMB 98 New York NY USA
copyright 1998 o-s9791-976-9/9w3..s5.oo 30

folding problem for the HP model has been conjectured
to be NP-complete [12], but a proof of NP-completeness
has eluded researchers. NP-completeness proofs for the
HP model have been sought not only for the purposes of
identifying sources of computational complexity in pro-
tein structure prediction, but also because NP-
completeness in this model would imply the computa-
tional intractability of computing the partition function.
This is of fundamental importance for a statistical me-
chanics analysis of protein folding.

There have been many attempts to prove NP-
completeness for related lattice models. Paterson and
Przytycka [22] proved that the problem is NP-complete
when the alphabet size is unbounded (instead of binary)
and the goal is to maximize the number of like letters
that are adjacent in the lattice. Unger and Moult [23]
use a similar model, however the active subsequence is
forced to lie on one straight line. Fraenkel [8, 91 proves
NP-completeness for protein folding on a lattice with
an alphabet of size three, but he embeds a graph rather
than just a string. He has recently improved these re-
sults so that the graph represents a more realistic model
of protein folding [lo]. Ngo and Marks [20] show the
more general problem of minimizing an energy func-
tion related to protein folding is NP-complete. How-
ever, their results do not take into account the compact-
ness constraints of protein folding captured by the HP
model. Also, their formulation contains a large number
of parameters (the number of parameters grows with
the length of the sequence) that are not constrained to
lie within biologically plausible ranges. Hart and Istrail
[13] generalized the results of Unger & Moult and Ngo
& Marks to hold for a variety of lattices and energy
functions. Proofs of NP-completeness have also been
obtained for other related problems, such as protein
threading [16, 2, 141. More recently, Nayak et al. [19]
have obtained NP-hardness and MAX SNP-hardness re-
sults for string folding on a lattice with a large finite
alphabet. In independent work, Crescenzi et al. [5]
have recently shown through different techniques that
protein folding in the HP model on a two-dimensional
lattice is NP-complete. The authors are currently work-
ing towards extending this result to three dimensions.

In this paper, we show for the first time that protein
folding in the HP model on a three-dimensional lattice
is NP-complete. In fact, we show that even the problem
of deciding whether or not a sequence can be folded so

-__-_
..-. -;.5 ~_ :_ _ . . _. ,-. ,.‘.‘,.‘.‘.., iv’-,‘-, -, ;~-“-~;,..~ .,.,, :-.I -$... ;- ., ,~ ;

-!

that the H’s cm be packed into a perfect cube (which is
the minimum energy configuration for a collection of H’s
without any string constraints) is NP-complete. The
proof uses a transformation from a special form of the
BIN PACKING problem [u], which we call MODIFIED
BIN PACKING. In particular, given an instance B of
the MODIFIED BIN PACKING problem, we show how
to construct a sequence S with n3 H’s so that there is
a conformation of S where the H’s form an n x n x n
cube if and only if there is a solution to B.

Our NP-completeness proof relies heavily on the fact
that nodes along the edges of a perfect cube have two
or three neighbors not in the cube, whereas nodes on a
face of a cube (but not on an edge) have just one neigh-
bor not in the cube. The proof does not rely on parity
arguments that are derived from the fact that the cu-
bic lattice is bipartite. The NP-completeness proof does
not immediately extend to general lattices, although our
methods may be helpful in understanding the complex-
ity of the protein folding problem in other models.

The discovery that protein folding in the HP model
is NP-complete lends further importance to the study of
approbation algorithms for protein folding. Hart and
Istrail [l2] have achieved approbation algorithms for
the HP model on the cubic and square lattices. Their
algorithms obtain an approximation factor of 3/S for the
cubic lattice and l/4 for the square lattice. Recently,
Hart and Istrail 11.51 have presented approximation al-
gorithms for off-lattice and side chain variants of the
HP model. Agarwala et al. [1] have shown that perfor-
mance guarantees of roughly 60% can be achieved for
the HP model on the hexagonal close packed lattice.
This model has the advantage that there are no parity
constraiuts imposed by the lattice.

The journal version of this paper appears in [3].

2 Problem Statement

The protein folding problem consists of embedding a
given finite polypeptide sequence S of length N into a
given fixed infinite graph G. In this paper, the graph G
will primarily be the 34imetional cubic lattice 23. A
fold of S in G is an injective mapping from [l, . . _, Xl
t.o G such that adjacent integers map to adjacent nodes
of G. Each node of 23 has six neighbors. The energy
of a fold of S in G to be minimized is the negation of
the number of H-H bonds in the fold, where a bond is
a pair of symbols mapped to adjacent nodes.

In the traditional way of looking at this problem,
successive pairs of H’s in S are not counted as forming
a bond when computing energy; thus, a given H has
at most four neighboring H’s. For simplicity, we will
include all H-H bonds in the energy calculation in this
paper- Our choice of convention does not make any
dXerence in terms of the NP-completeness result since
the number of H-H bonds in the sequence does not
depend in any way on the fold.

Another equivalent way of looking at the traditional
problem is to minimize the number of non-H’s among
the four neighbors of each H. In this framework, our
main result is that the problem of determining whether
or not there is a fold in the HP-model on the 3-d lattice
with a total of S non-H neighbors (the absolute mini-
mum) is NP-hard. We achieve hardness of appro-xima-

tion results only for this latter problem. The hardness
of (9/S - c)-approximation is straightforward. (We be-
lieve it is possible to extend our results to hardness of
N’ times optimal also, but we do not address this issue
in the current paper.)

We define the following decision version of the pro-
tein folding problem.

HP STRING-FOLD
Instance: A finite sequence S over the alphabet {H, P},

an integer m, and a graph G.
’ Question: Is there a fold (i.e., a self-avoiding walk)

of S in G where the number of H-H bonds is at least
m?

Our main result is that HP STRING-FOLD is NP-
complete when G is 23. The proof follows by showing
that the following folding problem is NP-hard.

PERFECT HP STRING-FOLD
Instance: An integer n and a finite sequence S over

the alphabet {H, P} which contains n3 H’s.
Question: Is there a fold of S in 23 for which the

H’s are perfectly packed into an n x n x n cube?
The proof that PERFECT HP STRING-FOLD is

NP-hard involves a transformation from the (strongly)
NP-complete problem of BIN PACKING, which is de-
fined as follows by Garey and Johnson [ll].

BIN PACKING
Instance: A finite set U of items, a size s(u) E 2+

for each u E U, a positive integer bm capacity B, ad a
positive integer K.

Question: Is there a partition of U into disjoint
sets Ul,Uz,..., UK such that the sum of the sizes of the
items in each U; is B or less?

To simplify matters, we will use the following va.ri-
ation of BIN PACKING which is easily shown to be
strongly NP-complete.

MODIFIED BIN PACKING
Instance: A finite set U of items, a size s(u) that

is a positive even integer for each u E U, a positive
integer bin capacity B, and a positive integer K, where

cdw; BK-
: Is there a partition of U into disjoint

setsU~,l&,..., UK such that the sum of the sizes of the
items in each U; is precisely B?

3 HP STRING-FOLD is NP-Complete

The proof that HP STRING-FOLD is NP-complete for
cubic lattices is comprised of two main parts. In the
first part (Section 3.1), we show that PERFECT HP
STRING-FOLD is just a special caSe of HP STRING-
FOLD. The proof is not difficult; it quickly follows from
the fact that the minimum energy configuration of n3
unrestricted H’s in the cubic lattice is an n x n x TZ cube.

In the second part (Section 3.2), we prove that PER-
FECT HP STRING-FOLD is NP-complete. This proof
comprises the main result of the paper and is somewhat
complicated. In order to aid the reader, we have en-
deavored to supply intuition where it may be helpful.

When the two parts are combined, we find that HP
STRING-FOLD iu the cubic lattice is NP-complete.’

‘To be precise, we prove that the STRING-FOLD problems
are NP-hard. NP-completeness follows from the additional sim-
ple fact that the problems are in NP.

3.1 HP STRING-FOLD is at Least as Hard as PER-
FECT HP STRING-FOLD

We first shorn that PERFECT HP STRING-FOLD is
a special case of HP STRING-FOLD. This is accom-
plished by showing that the optimal configuration for
a collection of unrestricted H’s in the cubic lattice is
uniquely achieved by packing the H’s into a perfect
cube. This fact may be known in the literature, but
we supply a proof for completeness.

Fact 3.1 Suppose there are n3 H’s in the sequence S
for some n. Suppose also that there are no constraints
imposed by the sequence; that is, adjacentsequenceposi-
tions need not map to adjacent nodes in the cubic lattice
G. Then the optimal conformation of S in G is uniquely
achieved by packing the H’s into an n x n x n cube.

Proof. Each of the n3 H’s has six neighbors in the
lattice. When the H’s are packed into an n x n x n
cube, all but 6n2 of these neighbors are themselves H’s.
(This is because there are precisely two potential H-
H bonds missing on each of the n2 X, Y, and Z lines
of the cube.) Since each H-H bond is counted twice
in the preceding formulation, this means that there are
(6a3 - 6n2)/2 = 37z2(vz - 1) H-H bonds in the cubic
conformation.

To show that the cubic conformation uniquely max-
imizes the number of H-H bonds, we will show that
any other conformation is missing strictly more than
672’ potential H-H bonds. Assume for the purposes
of contradiction that the conformation of H’s is not an
n x n x n cube and that it is missing at most 6n2 poten-
tial H-H bonds. Let A, B, and C denote the number
of X, Y, and Z lines (rap.) that contain an H in the
conformation. Then there are at least 2(A + B + C) to-
tal missing potential H-H bonds. By the assumption,
this means that 2(A+ B+ C) 2 6n2. By a classic result
in geometry, the number of grid points p in a configu-
ration with A, B, and C X, Y, and Z lines (resp.) is
at most dA= Further, p = dA= only if the
points are configured as a rectangular solid with face
areas A, B, and C. The maximum of dm given
A+B+C~3n20ccnrswhenA=B=C=n2. Hence
p 5 n3, with equality only if the points are configured
as an n x n x n grid. Since the H’s are assumed to not
form a cube, this means that there are fewer than n3
H’s, vzhich is a contradiction. 0

Theorem 3.2 PERFECT HP STRING-FOLD is the
special case of HP STRING-FOLD where S has n3 H ‘s,
m = 3n2(n - l), and G = 23.

Proof. By Fact 3.1, we know that S can be folded with
at least m = 3n2 (n - 1) H-H bonds in 23 if and only if
S can be folded so that its H’s form a perfect n x n x n
cube. 0

3.2 PERFECT HP STRING-FOLD is NP-complete

We next show that PERFECT HP STRING-FOLD
is NP-complete. The reduction is from MODIFIED
BIN PACKING. In particular, given a MODIFIED BIN
PACKING problem 13, we will construct a sequence S
for which its n3 H’s can be packed into the n x n x n
cube if and only if I3 is solvable. Since MODIFIED

BIN PACKING is strongly NP-hard, this will prove
that PERFECT HP STRING-FOLD is NP-hard. NP-
completeness follo-ivs trivially since we can guess all pos-
sible conformations for any string and then check if the
H’s pack into a cube.

The proof consists of three parts. In the first part
(Section 3.2.2), we show how to construct the desired
string S from the bm packing problem 8. In the second
part (Section 3.2.3), me show that if f3 has a solution,
then S can be packed so that the H’s form a perfect
nxnxn cube. In the third part (Section 3.2.4), weshow
that if S can be packed so that the H’s form an n x n x n
cube, then B has a solution. The net effect of the last
two parts is to shorn that any MODIFIED BIN PACK-
ING problem can be transformed into a PERFECT HP
STRING-FOLDING problem. Since MODIFIED BIN
PACKING is known to be strongly NP-complete, then
we can conclude that PERFECT HP STRING-FOLD
is NP-hard.2

3.2.1 Intuition

As the reader will soon discover, the details of the reduc-
tion are fairly involved. This is because it takes some
nontrivial amount of effort to encode a bin packing prob-
lem B into a string S in such a may that B is solvable
if and only if the H’s of S fold into a perfect cube. As
an aid to the reader in understanding the reduction,
me will therefore explain the basic intuition behind the
proof before we get into the details.

The crux of the proof relies on the fact that if the
H’s in a string S are to be perfectly packed into a cube,
then any H in S which is adjacent to a P in S must
be packed onto the surface of the cube. This is because
any H that is mapped into an internal node of the cube
can only have H’s for neighbors, and because adjacent
items in S must be mapped to adjacent locations in the
cube.

Taking this idea one step further, me can observe
that the H’s in a substring of the form

PHHP PHHP -.- PHHP = (PHHP)’

must be mapped to a connected path on the surface of
the cube. This is because:

each H is adjacent to a P and so it must be placed
on the surface (as argued above),

adjacent H’s in S must, by definition, be adjacent
in the cube, and

the H’s in HPPH must be adjacent because they
are separated by a path of length 3 in the cube, 2
steps of which (HP and PH) must be orthogonal
to the surface.3

For example, we have illustrated an embedding of
(PHHP)3 in Figure 1.4

‘Technically speaking, we also need to be sure that the length
of S is polynomial in the “nary encoding of l3, but this fact is
obvious from the construction.

sHere, we assume that the P’s are not allowed to be on the
surface since the cube is supposed to consist solely of H’S If we
were allowed to place P’s on the surface, then the X’s in HPPX
wouId not have to be adjacent in the cube.

4We should note that Figure 1 is not fully general since the
path of H’s can move from one face of the cube to another. The
path is always connected along the surface of the cube, however.

32

P P P P

H H

Ew

H P

H H

(a)

Figure 1: An embedding of (PIYTHP)~ in the cubic lattice.
In (a), the H’s are on a surface of the cube and the P’s reside
distance 1 above the surface. The resulting connected path
of H% is shown in (b)- In (b), we use a dashedline to denote
the existence of a path of two P’s above the surface.

Similarly, we can observe that if the H’s in a string
S are to be perfectly packed in a cube, then the H’s in
a substring of the form

PHP PHP --- PHP = (PHP)’

must be mapped to a connected path along the edges
of the cube. (A node of the cube is on an edge if it
lies on 2 or more faces.) This is because each H must
be adjacent to two P’s and the only nodes on the cube
which are adjacent to two non-cube nodes are the nodes
along the edgesws For example, see Figure 2.

(a) p

Figure 2: An embedding of (PHP)7 in the cubic lattice.
In (a), the H% are on an edge of the cube and the P’s reside
at distance 1 from the surfaces that define the edge. The
result~mg connectedpath of HYs is shown in (b), whose dashed
lines denote the existence of a path of two P’s above the
surfaces.

Our goal is to convert a MODIFIED BIN PACK-
ING problem L? into a string folding problem. We ac-
complish this task by creating a string S which con-
tains substrings corresponding to the bins of 23 as well
as the items of L3. These substrings are formed from
specific combinations of (PHP)*, (PHHP)‘, and P’.
This means that all the action (or difliculty in folding)

‘The fact that the H’s form a connected path follows from
the preceding discussion.

will take place on the surface of the cube. In particular,
the bins and items of B will correspond to substrings of
S for which the H’s are all embedded on a single face
of the cube.

I

The most diflicult part of the reduction is construct-
ing substrings of S that correspond to the bins of B. In
particular, we need to show that if the H’s of S pack
perfectly into a cube, then the substrings of S corre-
sponding to the bins must be mapped so as to partition
the face of the cube into K “bins” each with B surface
nodes. Insuring that no other fold is possible is what
makes the proof diflicult.

It is easier to create substrings corresponding to items
of B. Essentially, we will use a substring (PHHP)S(U)12
for each item u with size S(U) in B. Note that the H’s
in such a string must occupy precisely S(U) nodes on
the surface of the cube. Since these nodes correspond
to a connected path on the surface, the path must lie
entirely within one bin. This will mean that the Ttem
substrings” can be perfectly packed on the surface if
and only if the corresponding bm packing problem is
solvable (which is the main goal).

In order to connect all the substrings together in
S, we will use long runs of Pk. This will give us the
flexibiity needed to place “item substrings” that are
adjacent in S in bins that are far apart on the surface
of the cube (as may be necessary in the bm packing
solution). Of course, this leaves the problem of how
to embed the strings of Pk. We solve this problem by
using methods developed in the related field of 3D VLSI
wire routing.

We are now prepared to present the formal reduc-
tion. As anticipated, the string S will consist of many
copies of PHP, PHHP, long runs of P’s, and a single
long run of H’s. The role of PHP, PHHP, and P* in
S has been explained at a high level. The role of H’ is
simply to HI up the inter& nodes of the cube.

3.2.2 The Reduction

Consider any MODIFIED BIN PACKING problem 8.
Let

q = 2max(K, [B”“l),

= q(2q + 1) + 2, and
; = (2q-l)(n-2),

where B and K are bm packing parameters. Note that
q, n, and T are all even integers and that 2(T - B) >
T. Define c to be a sufficiently large constant that will
be specified later. The corresponding PERFECT HP
STRING-FOLD problem consists of packing the string
SB defined as in Figure 3.

3.2.3 Using a Bin Packing to Fold .Sa

We first show how to fold the string So so that the H’s
form an TZ x n x n cube provided that we are given a solu-
tion to the corresponding MODIFIED BIN-PACKING
problem B. The explanation is divided into four parts.
First we show how to pack all but the front face of the
cube of H’s. Next we show how to construct the “walls”
for the “bins” on the front face. Then we show how to
pack the substrings corresponding to the items into the

33

slj = (PHP)s”-lo (PHHP)(n-2)2’2 (PHPy2P4
((p~flp)(=-2)*/2p7 > 3 (pflflp~(74)~/2-1 pH(~-2)%2p8tq
((PHP)yPHHP)(“-2)‘2(PHP) 2qt1p4(pHHp)(n-2)/2(pHp)qp2q)q pH(p2qtQr)q-lp
(P”(PHHP)-=qq (PcyPHHP)=‘2)q-K n (P=n(PHHP)+q

UEU
Figure 3: The construction. We use the notation nl, S; to denote the string Sr I&l. - - I$.

bins. Finally, we show horn to pack the long strings of
F’s that connect the “item” substrings in S.

Packing All but the Front Face of the Cube
We begin by Ming in each node in nine of the tsveIve

edges of the cube with an H from the string (PBP)s”-lo-
In particular, we fiI.I nodes in the top face edges starting
at position6 (a - 2, a - 1, n - 1) tith H’s, move counter
clockwise to position (n - 1, n - 1, n - l), down an edge
to position (n - l,O, n - l), and dock-&se around the
bottom face to position (n - 2,0, n - 1). (See Figure 4)
The P’s from (PHP)sn-‘o are embedded in nodes ad-

(OJI-1.0)

(0.0.0)

Figure 4: The n x n x n cube with each corner position
labeled with its coordinate triple (i,j,k). Arrows indicate
the order in which the first nine edges are filled. The start
and end nodes on this path are also indicated.

jacent to the cube so as to keep the string connected.
The first P is embedded in node (n-2, n-l, n) and the
last one is embedded in node (n - 2,0, n). For example,
see Figure 5.

We next embed (PHHP)(“-2)2/2 so that the H’s
fi.U the back face of the cube in a vertical snake pat-
tern. Note that because each dimension of the face
(n - 2) is even, we will abvays end on the same side
that we began. See for example Figure 6. We then
embed (PHP)“-2 so that the H’s fill the ((O,O,n -

‘Henceforth, we vi11 refer to each position in the n x n x n
cube by a coordinate triple (i,j, k), where 0 5 i, j, k 5 n - 1.

m-u-1

P

Figure 5: An example of horn the ((0,n - 1,n - l),(n -
l,n-l,n-1)) edgeofthecubeis fllledinwith n-l PHP’s.
(Thecomer(n-l,n-l,n-l)isiXedaspartofthe((n-
l,O,n - l),(n - 1,n - 1,n - 1)) edge of the cube.) The
first P is in position (n - 2,n - l,n), and the first H is in
position (n - 2,n - l,n - 1). ‘l’be path moves right to left,
with only H’s labeled in this figure. The last H is in position
(O,n-l,n- l)andthelastPisin(-l,a-l,n-1).

1)s (O,n - 1, n - 1)) edge of the cube (skipping the cor-
ners uhich are already filled). We next embed P4 to
get from node (0, n - 2, n) to node (-2, n - 2, n - 2)
so that we can enter the left face without hitting any
previously fihed nodes. We then fiII in the left, bot-
tom, right, and top faces sequentially with H’s from
((PHHP)(n-2)2/2P7)3(PHHP)(n-2)112-1, running the
snake pattern so as to end up incident to the next face
in the sequence as in Figure 7. (The P7 term is used
to get from the end of one face to the start of the next.
We need seven P’s since nodes along the edges of the
cube have their two missing neighbors outside the cube
already filled in.) The last two nodes ((n - 2, n - 1,1)
and (n-3, n-l, 1)) on the top face are left temporariIy
open in order to enter and exit the interior.

The interior of the cube is reached through the next
to last top face node (n - 3, n - 1, l), which is now tiIIed
in with an H from PH. The interior of the cube is
then fiIIed with (TZ - 2j3 H’s in a truncated snake pat-
tern aIternating direction each layer, leaving the ((n -
2,0, l), (n-2, n-l, 1)) column open until the end when
it is used to move back to the node (n-2, n-l, l), which
is embedded with the last H from H(“-2)3t2. Then 8+q
P’s are used to take us to position (n - 1, n - 1 -q, -2).
(We use 8 + q P’s so as to route around previously em-
bedded P’s)

Packing the Front Face: Making the Bins
At this point, the entire cube is filIed with H’s except

for the n x (n - 2) region on the front face. We next
embed q sets of “bin walIs” on this face as follows. The
walls for each bm are fihed in with the H’s from the

34

Figure 6: The n x n x n cube with the back, left, bottom,
right, t,op, and tiont faces labeled. The back face is 6lled
with (n - 2)2/2 PHHP’s. The path indicates the order in
whichit is filled, startiugat node (n- 2,l,n-1) and ending
at node (1, 1, n - 1). Notice that the path through the face
ends on the same side it began because n is even. The P’s
are not shown but would appear diagonal to this face. There
isanarrow on the ((O,O,n- l),(O,n- l,n-1)) edge of the
cube, which is filled in immediately after the back face, to
indicate the order in which it is fiued.

as shown in Figure 8. In particular, each bm wall con-
sists of a path of q Ps embedded along an edge (called a
q&ring), followed by a path of n - 2 H’s embedded in a
straight hue across the face, followed by a path of 2q + 1
H’s embedded along the other edge (called a (29 + I)-
sting), followed by a path of n - 2 H’s embedded back
across the face, followed by a path of q H’s embedded
along the original edge. (Note that since q + 1 is odd,
four P’s are needed to connect the (2q+ l)-string to the
second horizontal path across the face. In addition, we
need a path of 2q P’s to connect the end of one bin wall
to the beginning of the next bm wall This path runs at
distance 2 from the cube so as not to intersect P’s used
for the edge segments of the bin walls.)

The bin walls are completed with H’s from
PH(P ‘q+‘H)q-lP (called a specicd q-string), as shown
in Figure 8. There will be one H used to finish off each
of the q bin wrdls. These H’s are separated by 2q rows
in the face, and we use 2q + 6 P’s to connect them since
we need to route the path at distance 3 from the cube
in order to avoid previously embedded P’s (from the
q-strings and the paths that connect q-strings). (Note
that the 2q P’s between the last q-string and the first
H of the special q-string are really not needed, but are
included to simplify the expression for SB- They can
be embedded by moving away distance q from the cube
and then returning.) The last P in the special q-string
is embedded at node (n - 1, n - 2 - q, -1).

Figure ‘7: The n x n x n cube with paths to indicate the
order-in which the left, bottom, right, and top faces are 6lled.
The start and end nodes of each face are labeled as follows:
leftface,SL = (O,n-2,n-2), audF’ = (O,l,n-2); bottom
face,Sg = (l,O,n--2),andFg = (n-2,O,n--2);rightface,
S, = (n - l,l,n - 2), and FR = (n - 1,n - 2,n - 2); top
face,S~=(n-2,n-l,n-2),andF~=(n-4,n-l,l).

. : .
i

Figure 8: The front face of the cube partitioned into p
%ii.” The top and bottom edges of the face have previously
been filled in.

Packing the Front Face: Placing the Items
At this point, the nodes on the front face that have

not been tilled have been partitioned into q (n - 2) x
(29 - 1) rectangular regions that we will refer to as bins
Bl,... , Bq. We next fill these bins with the remaining
H’s from Sa.

The remainder of SB consists of sequences of the
form

PCn(PHHP)=‘2

which we call an k-item-string. In particular, the re-
mainder of SB consists of q (T - B)-item-strings, q - k
B-item strings, and one s(u)-item-string for each item
UEUillB.

We will embed one (2’ - B)-item-string in each bin
and one B-item-string in each of bins BK+I, . . . , B,.
This will leave us with K bins each with B unfilled
nodes. These nodes are filled with the s(u)-item-strings
using the solution to L? as a guide. In particular, if

35

u E U; in the BIN PACKING solution, then me embed
an s(u)-item-string in Bi. As a result, every face node
will be Qled.

The item-strings are embedded so as to form a snak
like pattern within each bin. The exact order or loca-
tion of the item-strings within the bii does not matter,
provided only that the tirst H of each item-string is em-
bedded in an even node of the cube. (A node (i,j,k)
issaidtobeeerenifandonIyifi+j+k=OmodZ.)
Since each item-string has an even number of H’s, we
wiI.I then be assured that the Iast H of each item-string
is embedded in an odd node of the cube, and that each
item-string will consume an equal number of even and
odd cube nodes.

Packing the Connecting Strings of P’s
The remaining difficulty is to connect the last H in

one item-string with the first H in the next item-string
in SO (which might be located in a bin that is far away
in the cube). The connection is made by a path of cn+2
Pk. Note that this path of P’s has the correct parity
(even) since we are connecting H’s on the surface of the
cube with differing parities.

The problem of embedding the connecting paths is
equivalent to the problem of connecting pairs of end-
points on a 2-dimensional surface with wires that run in
a nonintersecting fashion through a 3-dimensional grid
that lies above (and beyond) the surface. Moreover, we
require that the wires all have the same length cn + 2
since they correspond to substrings consisting of cn+2
Pk.

Using methods from 3D VLSI wire routing [lo], we
can find a way to route the connecting paths for any col-
lection of pairs of endpoints on the surface. In fact, the
solution can be considered to be well-known except for
the constraint that all the paths have the same length
cn +- 2. In this situation, we will route the paths using
nodes of the form (i,j,k) where k < 0. (Note that no
nodes with k < -3 have been used thus far nor have
any nodes of the form (i,j,k) been used where k < 0
and (i, j, 0) is used for a string-item.)

In order to route the connecting paths in a non-
intersecting fashion, we will use the nodes with k < -3
to form a bdimensional crossbar switch. The inputs to
the switch can be thought of (without loss of generality)
as nodes with 0 < i, j 5 n - 1 and k = -4. The outputs
will be at nodes&h 0 2 i,j <n-l and k = -lOn+2.
The switch can connect the inputs to the outputs in any
permutation with node-disjoint paths. The construction
of the paths for any fixed permutation is provided in the
following lemmas, most of v~hich are well known in the
VLSI routing literature.

Lemma 3.3 Gieren a .%dimensional h x (2h - 1) array
with nodes {(i, j) 10 5 i < h, 0 5 j < 2h - l), it
is possible to route non-intersecting paths of length at
most 2(h - 1) from node (0,j) to node (h - 1,2j) for
O<j<h.

Proof. Immediate from the example shown in Figure 9.
Cl

Lemma 3.4 Given a 3-dimensionaZ(2h-1) x (2h-1) x
(2h - 1) array, it is possible to route non-intersecting
paths of length at most 4th - 1) from node (0, j,k) to
node (2h - 2,2j, 2k) for 0 5 j, I < h.

(3~2) (0,X)
Figure 9: Routing non-intersecting path of Iength at most
2(h-l)from(O,j)to(h-1,2j)forO<j<hinanlax(2h-1)
grid for h = 4. Note that no vertical segments are used in
the last column.

Proof. We iirst route paths of length at most 2(h - 1)
from (0, j,k) to (h-1,2j,k) using Lemma 3.3, and then
of Iength at most 2(h - I) from (h - 1,2j,k) to (2h -
2,2j,2k) using Lemma 3.3 in the other dimension. 0

Lemma 3.5 Given a 2h x (3h-2) x2 grid, it is possible
to route non-intersecting paths of length at most 6h - 5
from node (0,2j,O) to node (2h-1,2x(j), 0) for 0 < j <
h, where Jo is any permutation on [0, h - 11.

Proof. As ikstrated in Figure 10, each path but one
uses two columns and one row above row 2h - 2. The
remaining path uses just one column and no row above
row2h-2. 0

Figure 10: Routing non-intersecting paths of length at
most 6h - 5 from (0,2j, 0) to (2h - 1,27r(j), 0) for 0 5 j < h
ina2hx(3h-2)x2gridwhereh=4anda=(O231).
Horizontalsegments arerouted in the bottomlayer (i.e., the
third coordinate is 0) and vertical segments are routed in
the top layer (i.e., the third coordinate is 1). Note that no
vertical segments are used in the last cohmm, so two such
routings could be placed side by side without conflict.

Lemma 3.6 The elements of an h x h matrix can be
permuted in an arbitrary fashion by first permuting the
elements within each row, then permuting the elements
within each column, and then once again permuting the
elements within each row.

Proof. See Theorem 1.16 in Leighton [17]. •I

36

Lemma 3.7 Given a (6h - 2) x (3h - 2) x (3h - 2)
grid, it is possible to route non-intersecting paths of
length at most 18h - 15 from node (0,2j, 27;) to node
(6h - 3, 2q(j, k),2xo(j, k)) for 0 2 j,B < h where x =
(~1, ~2) is any permutation on [O, h - I] x [0, h - I].

Proof. We use Lemma 3.6 to express H as a collec-
tion of permutations within the rows, followed by a col-
lection of permutations within the columns, followed
by a collection of permutations within the rows. The
first collections of row permutations is routed in nodes
(i,j, h) with 0 < i 2 2i - 1 using Lemma 3.5 for each
row. The col& oermutations are routed in nodes with
3h - 1 < i < 4h L 2 using Lemma 3.5 for each column.
The f&l set of row permutations is routed in nodes
with 4h - 2 5 i 5 6h - 3, agti using Lemma 3.5 for
each row. (Note that we have spaced the endpoints of
the paths so as to allow each row/column permutation
to have dedicated access to a two-layer grid. Note also
that we can use nodes with i = 2h - 1 for both row
and column permutations since edges on those levels
are used only by the column permutations. The nodes
with i = 4h-2 can be reused in a similar fashion.) The
length of each path is then 3(6h - 5) = 18h - 15. 0

Lemma 3.8 Given a (lOh-6) x (3h-2) x (3h-2) grid,
it is possible to route non-intersecting paths of length
at most 26h - 23 from node (O,j,k) to node (IOh -
6, ~1 (j, k), zrz(j, 7~x7)) for 0 2 j, k < h where zr = (XI, ~2)
is any permutation on [0, h - l] x [0, h - l]-

Proof. We fist use Lemma 3.4 to connect (O,j, k) to
(2h - 2,2i, 2k) using a path of length at most 4(h - 1).
lT7e then use Lemma 3.7 to connect (2h - 2,2j,2k) to
(8h - 5,2rrl(i,k),27rs(j, k)) using a path of length at
most 18h-15. (Note that the nodes with i = 2h-2 play
the role of nodes with i = 0 in Lemma 3.7.) Then we use
Lemma 3.4 agam to connect (8h--5,2z1 3, (' f4,2~2(j,W
to (1Oh - 7,x1 (i, k), xz(j, k)) using a path of length at
most 4(h - 1). 0

We are now ready to embed the paths of length cat-2
that connect the item-strings. ?Ve first use four P’s for
each end of each item-string to get to distance four from
the front face of the cube (i-e., so H = -4). We then use
Lemma 3.8 with h = n to permute the ends of the item-
strings so that endpoints that are adjacent in Sg will be
adjacent on the plane of the lattice with k = -101~ + 2.
At this point, we could complete the connections for
each path by adding a single edge. Overall, each path
would have length at most

2(26n-23+4)+-1=52n-37.

W’e must insure that each path has length precisely cn+
2, however. This can be accomplished by setting c = 52
and routing each path as far as it needs to go away
from the cube in a loop in order that it will have length
precisely 52n + 2. (Of course, we need to be sure that
the parrty of the path extension is correct, but this has
already been assured by the embedding of the item-
strings.)

This concludes the proof that Sa can be embedded
in an O(n) x O(n) x O(n) cube so that the EE’s form an
n x n x n cube, provided that Li is solvable.

3.2.4 Using a Fold of SO to Solve BIN PACKING

We next show how to solve the MODIFIED BIN PACK-
ING problem B provided that we are given a solution
to the PERFECT HP STRING-FOLD problem for Sa.
Throughout, we assume that the sequence Sa is folded
so that the H’s form a perfect n xn xn cube. The follow-
ing simple facts, which were proved above, are crucial
to our analysis.

Fact 3.9 Any singZe H surrounded by P’s in Sa (e.g.,
PHP) must be embedded in a node that is on the edge
of the cube.

Fact 3.10 Any H that is adjacent to a P in Sa (e.g.,
HP) must be embedded on a face (including its edges)
of the cube.

Fact 3.11 If a pair of H’s are separated by two P’s
in SO (e.g., HPPH), then the H’s are embedded in
adjacent positions on a face of the cube.

The explanation is divided into two parts. First we
show how the edges of the cube must be filled with H’s
from So- This is the part of the proof where we argue
that certain substrings of Sa must fold so as to form bins
of a fixed size on the surface of the cube. In the second
part, we show that the “item substrings” in Sa must
be packed on the surface of the cube so as to provide a
solution to the bm packing problem B.

Forming the Bins
By the construction of Sa, there are 12(n - 2) + 8 =

12n-16 single H’s surrounded by P’s, which is precisely
the number of nodes on the edges of the cube. The
manner in which these H’s are mapped to nodes on
the edges of the cube is highly constrained by Sa, and
it is critical to the proof. For example, by Facts 3.9
and 3.11, the 9n - 10 H’s in the substring (PHP)g”-lo
must be mapped to a contiguous path of nodes along the
edges of the cube. There are several ways that this can
be accomplished, but each such mapping must leave at
least one neighbor of at least six corner nodes unfilled.
This is because corner nodes have an odd number of
neighbors on the edges and a simple path can only till 0
or 2 of them unless the path ends at a neighbor. Since
the path can only have two endpoints and since it is so
long, it must fill all eight corner nodes as well as every
node in a total of nine edges of the cube. Moreover,
the three remaining unfilled edges of the cube (unfilled
except for their endpoints, that is) must not share a
corner. The nodes along one of the remaining three
edges must then be filled with H’s from the substring
(PHP)“-2. This leaves precisely n - 2 nodes unfilled
for each of two nonadjacent edges of the cube.

By the definition of SU, the remaining two edges of
the cube must be filled with H’s from substring

Note that the single H’s iu this string can be naturally
grouped into three classes as follows: q-strings of the

form (PHP)“, (2q + l)-sttings of the form (PHP)*q+l,
and a special q-stting of the form PH(P2q+6H)q-‘P.
There are 2q q-strings, q (2q + l)-strings, and 1 special
q-string in SB. Since the comers of the cube are already
filled, it is clear that each q-string and (2q + 1)-string
must be mapped to nodes within a single edge of the
cube. In addition, since 2q+6 < n and since the unfilled
edges are nonadjacent, the points in the special q-string
must also be mapped to nodes within a single edge. The
following lemma will help us characterize more precisely
horn the q-strings, (29 + 1)-strings, and the special q-
string are mapped to the two unfilled edges.

Lemma 3.12 If an edge is perfectlypacked with q-strings
and (2q+l)-strings, then it is per-ectlypacked with only
(29. -I- 1)-strings.

Proof. Suppose for the purposes of contradiction that
we could perfectly pack the edge with i q-strings and j
(29 + I)-strings, where i > 0. Then iq + j(2q + 1) =
1~ - 2 = q(2q + l), which implies that j G 0 mod q- If
j = 0, then i = 2q f- 1, which is a contradiction since
there are only 2q q-strings. Ifj 1 q, then i = 0, which is
also a contradiction. Hence, the edge is perfectly packed
by only (29 + 1)-strings. 0

As a consequence of Lemma 3.12, we know that the
n. - 2 nodes in one of the unfilled edges of the cube get
filled with H’s from the q (2q f- 1)-strings. The n - 2
nodes in the other nnfllled edge get tilled with H’s from
the 2q q-strings and the special q-string.

We can also deduce that the trvo edges are on op
posite sides of the same face of the cube. This is be-
cause each (2q + 1)-string is separated from a q-string
by (PHBIP)(“-*)12, which accounts for distance n - 2
between the respective edges. Since the edges cannot
share a corner, they must be on opposite sides of the
same face.

In fact, we can say much more about the manner in
which the H’s from

are packed. First, the (29 + I)-strings form a partition
of one edge into q intervals of length 2q+ 1. Second, the
strings of the form (PHHP)(n”)‘2 that surround each
(2q + I)-string correspond to straight lines through the
face containing the opposing edges. This is because the
only way to get betsveen two opposite edges with a path
of length a - 2 H’s is by a straight line.7 Hence, the

‘To be wry precise, wit need to argue that the first H in
Ps(PHHP)(n-2)/’ must be adjacent to the last H in the pre-
ceding (2qfl)-string. In fact, the argument is somewhat delicate
since it is not generally true that H’s which are separated by six
P’s in .!7~ need to be adjacent in the embedding. Holyever, in
this case, xIe know that the P’s from the (29 + l)-strings occupy
every node of the form (0, j, - 1) where 1 5 j 5 n - 2. Moreover,
the last P for each (24 + I)-string is forced to occupy a node of
the form (-1, j, 0). In order to get from (-1, j,O) to the front
face without intersecting the cube or the P’s in nodes (0, *,-1),
ve must first go to node (-1, j, -2), and then to (I, j, -2) and
then to (l,j, 0), which requires six P’s overall. In fact, this is the
only non-edge face node that is legally reachable by six or fer7er
P’s from (O,j, 0), given that the first P must reside at (-1, j, 0).

H’s in

must partition a face of the cube into q rectangular re-
gions (called “bins”), each containing (n - 2)(2q - I)
unused face nodes. For example, see Figure 8.

Packing the Items into Bins
At this point in our analysis, we have filled all the

nodes in the edges of the cube as well as some of the
nodes in a face of the cube. As a result, the surface of
the cube has been partitioned into five regions (faces)
of sire (n - 2)* and q regions (bins) of sire T = (n -
2)(2q - 1). Into these regions, me must pack all the
H’s from four copies of (PHHP)(n-2)2/2, one copy of
(pHHp)(‘+*)2/*-l , q copies of (PHHP)(T-B)/2, q-K
copies of (PHHP)B12, as well as one copy of
(PHHP) ‘fU)/* for each item ti E U. We also need to

pack two H’s from H(n-2)3+2 into the remaining face
nodes.

Since the H’s in any string of the form (PHHP)’
must form a contiguous path on the surface of the cube
(Fact 3.11), they must all be packed into the same face
or bin. This constraint severely restricts our options
for locating the H’s. For example, the five empty faces
must become filled with H’s from the four copies of
(PHHP)(“-2)212, the single copy of (PHHP)(“-2)2/2-1,

and (without loss of generality) two H’s from H(“-2)3t2.
(These strings are too long to fit in the bins.) Each of
the q bins gets one of the q copies of (PHHP)(T-B)/2.
(This is because the bins are not large enough to con-
tain two copies since 2(T - B) > T.) In addition, q - K
bii get one copy of (PHHP)B/2, which completes the
filling of those bins.

At this point, we are left with K nonempty bins, each
with B available face nodes, and one copy of
(PHHP)“(“)‘* for each item u E U. Since xuEr, s(u) =
BK, these strings must pack perfectly into the bins and
so the packing of the string into the cube provides a
solution to the MODIFIED BIN PACKING problem.

4 Discussion

In this paper, me have shown that protein folding in the
HP model is NP-complete. We have thus settled the
recurring open question about the complexity of protein
folding in this model [21].

Our work also complements existing efforts to char-
acterize various hardness aspects of protein folding [20,
21, 13, 9, 23, 221. In particular, our proof shows that
any reasonably fast protein folding algorithm will have
to rely on aspects other than just hydrophobicity con-
siderations.

Our methods do not apply to the 2D square lattice,
although the 3D cubic model that we study seems to
be more relevant to the actual protein folding problem.
Nor does our proof directly apply to the 3D tetrahe-
dral lattice, which has been proposed because it avoids

38

the parity problem of the cubic lattice. Although our
methods do not rely on parity arguments, they fail be-
cause we cannot utilize as easily the different number of
missing neighbors between edge and face nodes in the
minimum configuration arrangement.

5 Acknowledgements

Many thanks to Serafim Batzoglou, Sorin Istrail, Esther
Jesurum, and Lior Pachter for helpful comments, and to
Sorin Istrail for po,&ng this problem to us. Thanks are
also due to anonymous referees for their helpful com-
ments. B.B. is partially supported by an NSF Career
Award B.B. and T-L. are partially supported by ARPA
contract N0001495-1-1246 and AR0 grant DAAH04
95-l-0607.

References

[l] R Agarwala, S. Batzoglou, V. Dam%, S. De
catur, M. Farach, S. Hannenhahi, S. Skiena, and
S. Muthukrishnan. Local rules for protein folding
on a triangular lattice and generalized hydropho
bicity in the HP model J. Computational BioL,
4(3):2?5-296, Fall 1997.

[2] T. Akutsu and S. Miyano. On the approxima-
tion of protein threading. In Proc. First Annual
Irk Conf. on Computational Molecular Biol. (RE
COMB), pages 3-8, Santa Fe, NM, jan 1997. ACM.

[3] B. Berger and T. Leighton. Protein folding in
the hydrophobic-hydrophilic (HP) model is NP-
complete. J. Computational BioL, Spring 1998. In
press.

143 J. D. Bryngelson, J. N- Onuchic, N. D. Socci,
and P. G. T%701ynes. Funnels, pathways, and the
energy landscape of protein folding: a synthesis.
PROTEINS: Structure, Function, and Genetics,
21:167-195, 1995.

[5] P. Crescenzi. D. Goldman. C. Paoadimitriou.
A. Piccolbom, and M. Y&akakis. Cn the corn:
plexity of protein folding. In Proc. 2nd Annual
Int. Conf. on Computational hfolecular Biology
(RECOhfB), New York City, NY, March 1998.
ACM. To appear-

If51

171

181

PI

K. DilL Theory for the folding and stability of glob
nlar proteins. Biochemistry, 24:1501-X09, 1985.

K- Dill, S. Bromberg, K. Yue, K. Fiebig, D. Yee,
P. Thomas, and H. Ghan. Principles of protein
fold&p A perspective from simple exact models.
Protein Science, 4561-602, 1995.

A Fraenkel. Deexponentializing complex computa-
tional mathematical problems using physical or bi-
ological systems. Technical Report CS90-30, Weiz-
mann Inst. of Science, Dept. of Applied Math and
Computer Science, 1990.

A. Fraenkel. Complexity of protein folding. Bull.
hfath BioL, 55:1199-1210, 1993.

PO1

ml

P21

P31

P41

[I51

[161

1171

P31

P91

PO1

Pll

A. S. Fraenkel. Protein folding, spin glass and com-
putational complexity. In Third Annual DIMACS
Workshop on DNA Based Computers, Philadel-
phia, PA, June 1997. To appear in proceedings
as an invited paper.

M. Garey and D. Johnson. Computers and In-
tractability. Freeman, New York, 1979.

W. Hart and S. Istrail. Fast protein fold-
ing in the hydrophobic-hydrophilic model within
three-eighths of optimal. J. Computational Biol.,
3(1):53-96, Spring 1996.

W. Hart and S. Istrail. Robust proofs of NP-
hardness for protein folding: General lattices and
energy potentials. J. Computationa Biol., 4(1):1-
22, spring 1997.

W. E. Hart. On the computational complexity
of sequence design problems. In Proc. First An-
nual Int. Conf. on Computational Molecular Biol-
ogy (RECOMB), pages 128-136, Santa Fe, NM, jan
1997. ACM.

W. E. Hart and S. Istrail. Lattice and off-lattice
side chain models of protein folding: Linear time
structure prediction better than In Proc. First An-
nual Int. Conf. on Computational Molecular Biol-
ogy (RECOMB), pages 137-146, Santa Fe, NM, jan
1997. ACM.

R. H. Lathrop. The protein threading problem with
sequence amino acid interaction preferences is np-
complete. Protein Engineering, 7:1059-1068, 1994.

T. Leighton. Introduction to Parallel Algorithms
and Architechtures: Arrays . Trees - Hypercubes,
chapter Arrays and Trees, page 190. Morgan Kauf-
mann, San Mateo, CA, 1992.

T. Leighton and A. Rosenberg. Three-dimensional
circuit layouts. SIAM J. Computing, 15(3):793-
813, 1986.

A. Nayak, A. Sinclair, and U. Zwick. Spatial codes
and the hardness of string folding problems. In Pro-
ceedings of the Ninth Annual ACM-SIAM Sympo-
sium on Discrete Alg orithms, Philadelphia, Jan-
uary 1998. ACM/SIAM. To appear.

J. Ngo and J. Marks. Computatinal complexity of a
problem in molecular structure prediction. Protein
Engineering, 5:313-321, 1992.

J. Ngo, J. Marks, and M. Karplus. The Pro-
tein Folding Problem and Tertiary Structure Pre-
diction, chapter Computational complexity, pro-
tein structure prediction, and the Levinthal para-
dox. Birkhauser, Basel, 1994. Edited by K.M. Merz
and S.M. LeGrand.

[22] M. Paterson and T. Przytycka. On the complexity
of string folding. Discrete Applied Mathematics,
71:217-230, 1996.

[23] R Unger and J. Moult. Finding the lowest free
energy conformatoin of a protein is an np-hard
prblem:proof and implications. Bull. Math. Biol.,
55:1183-1198, 1993.

39

