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Abstract 

One of the simplest and most popular biophysical mod- 
els of protein folding is the hydrophobic-hydrophilic (HP) 
model. The HP model abstracts the hydrophobic in- 
teraction in protein folding by labeling the amino acids 
as hydrophobic (H for nonpolar) or hydrophilic (P for 
polar). Chains of amino acids are con6gured as self- 
avoiding nalks on the 3D cubic lattice, where an opti- 
mal conformation maximizes the number of adjacencies 
between H’s. In this paper, the protein folding prob- 
lem under the HP model on the cubic lattice is shown 
to be NP-complete. This means that the protein fold- 
ing problem belongs to a large set of problems that are 
believed to be computationally intractable. 

1 Introduction 

One of the most widely studied models of protein folding 
is the hydrophobic-hydrophilic (HP) model introduced 
by Dii [6]- In the HP model, chains of amino acids 
are configured as s&-avoiding walks on the 3D cubic 
lattice (Le., adjacent amino acids of each chain lie on 
adjacent lattice sites, and no site is occupied by more 
than one amino acid). Based on the assumption that 
the hydrophobic reactions make an important contribu- 
tion to the free energy of the embedding, a protein is 
modeled as a specific sequence of hydrophobic (H for 
nonpolar) or hydrophilic (P for polar) monomers. An 
optimal conformation maximizes the number of adja- 
cencies between H’s. 

The complexity of protein folding has remained open 
for the major models of biological interest [2l, 4, 121. 
Foremost among these models is the HP model [7] that 
was introduced by biophysicists in 1985. The protein 
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folding problem for the HP model has been conjectured 
to be NP-complete [12], but a proof of NP-completeness 
has eluded researchers. NP-completeness proofs for the 
HP model have been sought not only for the purposes of 
identifying sources of computational complexity in pro- 
tein structure prediction, but also because NP- 
completeness in this model would imply the computa- 
tional intractability of computing the partition function. 
This is of fundamental importance for a statistical me- 
chanics analysis of protein folding. 

There have been many attempts to prove NP- 
completeness for related lattice models. Paterson and 
Przytycka [22] proved that the problem is NP-complete 
when the alphabet size is unbounded (instead of binary) 
and the goal is to maximize the number of like letters 
that are adjacent in the lattice. Unger and Moult [23] 
use a similar model, however the active subsequence is 
forced to lie on one straight line. Fraenkel [8, 91 proves 
NP-completeness for protein folding on a lattice with 
an alphabet of size three, but he embeds a graph rather 
than just a string. He has recently improved these re- 
sults so that the graph represents a more realistic model 
of protein folding [lo]. Ngo and Marks [20] show the 
more general problem of minimizing an energy func- 
tion related to protein folding is NP-complete. How- 
ever, their results do not take into account the compact- 
ness constraints of protein folding captured by the HP 
model. Also, their formulation contains a large number 
of parameters (the number of parameters grows with 
the length of the sequence) that are not constrained to 
lie within biologically plausible ranges. Hart and Istrail 
[13] generalized the results of Unger & Moult and Ngo 
& Marks to hold for a variety of lattices and energy 
functions. Proofs of NP-completeness have also been 
obtained for other related problems, such as protein 
threading [16, 2, 141. More recently, Nayak et al. [19] 
have obtained NP-hardness and MAX SNP-hardness re- 
sults for string folding on a lattice with a large finite 
alphabet. In independent work, Crescenzi et al. [5] 
have recently shown through different techniques that 
protein folding in the HP model on a two-dimensional 
lattice is NP-complete. The authors are currently work- 
ing towards extending this result to three dimensions. 

In this paper, we show for the first time that protein 
folding in the HP model on a three-dimensional lattice 
is NP-complete. In fact, we show that even the problem 
of deciding whether or not a sequence can be folded so 
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that the H’s cm be packed into a perfect cube (which is 
the minimum energy configuration for a collection of H’s 
without any string constraints) is NP-complete. The 
proof uses a transformation from a special form of the 
BIN PACKING problem [u], which we call MODIFIED 
BIN PACKING. In particular, given an instance B of 
the MODIFIED BIN PACKING problem, we show how 
to construct a sequence S with n3 H’s so that there is 
a conformation of S where the H’s form an n x n x n 
cube if and only if there is a solution to B. 

Our NP-completeness proof relies heavily on the fact 
that nodes along the edges of a perfect cube have two 
or three neighbors not in the cube, whereas nodes on a 
face of a cube (but not on an edge) have just one neigh- 
bor not in the cube. The proof does not rely on parity 
arguments that are derived from the fact that the cu- 
bic lattice is bipartite. The NP-completeness proof does 
not immediately extend to general lattices, although our 
methods may be helpful in understanding the complex- 
ity of the protein folding problem in other models. 

The discovery that protein folding in the HP model 
is NP-complete lends further importance to the study of 
approbation algorithms for protein folding. Hart and 
Istrail [l2] have achieved approbation algorithms for 
the HP model on the cubic and square lattices. Their 
algorithms obtain an approximation factor of 3/S for the 
cubic lattice and l/4 for the square lattice. Recently, 
Hart and Istrail 11.51 have presented approximation al- 
gorithms for off-lattice and side chain variants of the 
HP model. Agarwala et al. [1] have shown that perfor- 
mance guarantees of roughly 60% can be achieved for 
the HP model on the hexagonal close packed lattice. 
This model has the advantage that there are no parity 
constraiuts imposed by the lattice. 

The journal version of this paper appears in [3]. 

2 Problem Statement 

The protein folding problem consists of embedding a 
given finite polypeptide sequence S of length N into a 
given fixed infinite graph G. In this paper, the graph G 
will primarily be the 34imetional cubic lattice 23. A 
fold of S in G is an injective mapping from [l, . . _, Xl 
t.o G such that adjacent integers map to adjacent nodes 
of G. Each node of 23 has six neighbors. The energy 
of a fold of S in G to be minimized is the negation of 
the number of H-H bonds in the fold, where a bond is 
a pair of symbols mapped to adjacent nodes. 

In the traditional way of looking at this problem, 
successive pairs of H’s in S are not counted as forming 
a bond when computing energy; thus, a given H has 
at most four neighboring H’s. For simplicity, we will 
include all H-H bonds in the energy calculation in this 
paper- Our choice of convention does not make any 
dXerence in terms of the NP-completeness result since 
the number of H-H bonds in the sequence does not 
depend in any way on the fold. 

Another equivalent way of looking at the traditional 
problem is to minimize the number of non-H’s among 
the four neighbors of each H. In this framework, our 
main result is that the problem of determining whether 
or not there is a fold in the HP-model on the 3-d lattice 
with a total of S non-H neighbors (the absolute mini- 
mum) is NP-hard. We achieve hardness of appro-xima- 

tion results only for this latter problem. The hardness 
of (9/S - c)-approximation is straightforward. (We be- 
lieve it is possible to extend our results to hardness of 
N’ times optimal also, but we do not address this issue 
in the current paper.) 

We define the following decision version of the pro- 
tein folding problem. 

HP STRING-FOLD 
Instance: A finite sequence S over the alphabet {H, P}, 

an integer m, and a graph G. 
’ Question: Is there a fold (i.e., a self-avoiding walk) 

of S in G where the number of H-H bonds is at least 
m? 

Our main result is that HP STRING-FOLD is NP- 
complete when G is 23. The proof follows by showing 
that the following folding problem is NP-hard. 

PERFECT HP STRING-FOLD 
Instance: An integer n and a finite sequence S over 

the alphabet {H, P} which contains n3 H’s. 
Question: Is there a fold of S in 23 for which the 

H’s are perfectly packed into an n x n x n cube? 
The proof that PERFECT HP STRING-FOLD is 

NP-hard involves a transformation from the (strongly) 
NP-complete problem of BIN PACKING, which is de- 
fined as follows by Garey and Johnson [ll]. 

BIN PACKING 
Instance: A finite set U of items, a size s(u) E 2+ 

for each u E U, a positive integer bm capacity B, ad a 
positive integer K. 

Question: Is there a partition of U into disjoint 
sets Ul,Uz,..., UK such that the sum of the sizes of the 
items in each U; is B or less? 

To simplify matters, we will use the following va.ri- 
ation of BIN PACKING which is easily shown to be 
strongly NP-complete. 

MODIFIED BIN PACKING 
Instance: A finite set U of items, a size s(u) that 

is a positive even integer for each u E U, a positive 
integer bin capacity B, and a positive integer K, where 

cdw; BK- 
: Is there a partition of U into disjoint 

setsU~,l&,..., UK such that the sum of the sizes of the 
items in each U; is precisely B? 

3 HP STRING-FOLD is NP-Complete 

The proof that HP STRING-FOLD is NP-complete for 
cubic lattices is comprised of two main parts. In the 
first part (Section 3.1), we show that PERFECT HP 
STRING-FOLD is just a special caSe of HP STRING- 
FOLD. The proof is not difficult; it quickly follows from 
the fact that the minimum energy configuration of n3 
unrestricted H’s in the cubic lattice is an n x n x TZ cube. 

In the second part (Section 3.2), we prove that PER- 
FECT HP STRING-FOLD is NP-complete. This proof 
comprises the main result of the paper and is somewhat 
complicated. In order to aid the reader, we have en- 
deavored to supply intuition where it may be helpful. 

When the two parts are combined, we find that HP 
STRING-FOLD iu the cubic lattice is NP-complete.’ 

‘To be precise, we prove that the STRING-FOLD problems 
are NP-hard. NP-completeness follows from the additional sim- 
ple fact that the problems are in NP. 



3.1 HP STRING-FOLD is at Least as Hard as PER- 
FECT HP STRING-FOLD 

We first shorn that PERFECT HP STRING-FOLD is 
a special case of HP STRING-FOLD. This is accom- 
plished by showing that the optimal configuration for 
a collection of unrestricted H’s in the cubic lattice is 
uniquely achieved by packing the H’s into a perfect 
cube. This fact may be known in the literature, but 
we supply a proof for completeness. 

Fact 3.1 Suppose there are n3 H’s in the sequence S 
for some n. Suppose also that there are no constraints 
imposed by the sequence; that is, adjacentsequenceposi- 
tions need not map to adjacent nodes in the cubic lattice 
G. Then the optimal conformation of S in G is uniquely 
achieved by packing the H’s into an n x n x n cube. 

Proof. Each of the n3 H’s has six neighbors in the 
lattice. When the H’s are packed into an n x n x n 
cube, all but 6n2 of these neighbors are themselves H’s. 
(This is because there are precisely two potential H- 
H bonds missing on each of the n2 X, Y, and Z lines 
of the cube.) Since each H-H bond is counted twice 
in the preceding formulation, this means that there are 
(6a3 - 6n2)/2 = 37z2(vz - 1) H-H bonds in the cubic 
conformation. 

To show that the cubic conformation uniquely max- 
imizes the number of H-H bonds, we will show that 
any other conformation is missing strictly more than 
672’ potential H-H bonds. Assume for the purposes 
of contradiction that the conformation of H’s is not an 
n x n x n cube and that it is missing at most 6n2 poten- 
tial H-H bonds. Let A, B, and C denote the number 
of X, Y, and Z lines (rap.) that contain an H in the 
conformation. Then there are at least 2(A + B + C) to- 
tal missing potential H-H bonds. By the assumption, 
this means that 2(A+ B+ C) 2 6n2. By a classic result 
in geometry, the number of grid points p in a configu- 
ration with A, B, and C X, Y, and Z lines (resp.) is 
at most dA= Further, p = dA= only if the 
points are configured as a rectangular solid with face 
areas A, B, and C. The maximum of dm given 
A+B+C~3n20ccnrswhenA=B=C=n2. Hence 
p 5 n3, with equality only if the points are configured 
as an n x n x n grid. Since the H’s are assumed to not 
form a cube, this means that there are fewer than n3 
H’s, vzhich is a contradiction. 0 

Theorem 3.2 PERFECT HP STRING-FOLD is the 
special case of HP STRING-FOLD where S has n3 H ‘s, 
m = 3n2(n - l), and G = 23. 

Proof. By Fact 3.1, we know that S can be folded with 
at least m = 3n2 (n - 1) H-H bonds in 23 if and only if 
S can be folded so that its H’s form a perfect n x n x n 
cube. 0 

3.2 PERFECT HP STRING-FOLD is NP-complete 

We next show that PERFECT HP STRING-FOLD 
is NP-complete. The reduction is from MODIFIED 
BIN PACKING. In particular, given a MODIFIED BIN 
PACKING problem 13, we will construct a sequence S 
for which its n3 H’s can be packed into the n x n x n 
cube if and only if I3 is solvable. Since MODIFIED 

BIN PACKING is strongly NP-hard, this will prove 
that PERFECT HP STRING-FOLD is NP-hard. NP- 
completeness follo-ivs trivially since we can guess all pos- 
sible conformations for any string and then check if the 
H’s pack into a cube. 

The proof consists of three parts. In the first part 
(Section 3.2.2), we show how to construct the desired 
string S from the bm packing problem 8. In the second 
part (Section 3.2.3), me show that if f3 has a solution, 
then S can be packed so that the H’s form a perfect 
nxnxn cube. In the third part (Section 3.2.4), weshow 
that if S can be packed so that the H’s form an n x n x n 
cube, then B has a solution. The net effect of the last 
two parts is to shorn that any MODIFIED BIN PACK- 
ING problem can be transformed into a PERFECT HP 
STRING-FOLDING problem. Since MODIFIED BIN 
PACKING is known to be strongly NP-complete, then 
we can conclude that PERFECT HP STRING-FOLD 
is NP-hard.2 

3.2.1 Intuition 

As the reader will soon discover, the details of the reduc- 
tion are fairly involved. This is because it takes some 
nontrivial amount of effort to encode a bin packing prob- 
lem B into a string S in such a may that B is solvable 
if and only if the H’s of S fold into a perfect cube. As 
an aid to the reader in understanding the reduction, 
me will therefore explain the basic intuition behind the 
proof before we get into the details. 

The crux of the proof relies on the fact that if the 
H’s in a string S are to be perfectly packed into a cube, 
then any H in S which is adjacent to a P in S must 
be packed onto the surface of the cube. This is because 
any H that is mapped into an internal node of the cube 
can only have H’s for neighbors, and because adjacent 
items in S must be mapped to adjacent locations in the 
cube. 

Taking this idea one step further, me can observe 
that the H’s in a substring of the form 

PHHP PHHP -.- PHHP = (PHHP)’ 

must be mapped to a connected path on the surface of 
the cube. This is because: 

each H is adjacent to a P and so it must be placed 
on the surface (as argued above), 

adjacent H’s in S must, by definition, be adjacent 
in the cube, and 

the H’s in HPPH must be adjacent because they 
are separated by a path of length 3 in the cube, 2 
steps of which (HP and PH) must be orthogonal 
to the surface.3 

For example, we have illustrated an embedding of 
(PHHP)3 in Figure 1.4 

‘Technically speaking, we also need to be sure that the length 
of S is polynomial in the “nary encoding of l3, but this fact is 
obvious from the construction. 

sHere, we assume that the P’s are not allowed to be on the 
surface since the cube is supposed to consist solely of H’S If we 
were allowed to place P’s on the surface, then the X’s in HPPX 
wouId not have to be adjacent in the cube. 

4We should note that Figure 1 is not fully general since the 
path of H’s can move from one face of the cube to another. The 
path is always connected along the surface of the cube, however. 
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(a) 

Figure 1: An embedding of (PIYTHP)~ in the cubic lattice. 
In (a), the H’s are on a surface of the cube and the P’s reside 
distance 1 above the surface. The resulting connected path 
of H% is shown in (b)- In (b), we use a dashedline to denote 
the existence of a path of two P’s above the surface. 

Similarly, we can observe that if the H’s in a string 
S are to be perfectly packed in a cube, then the H’s in 
a substring of the form 

PHP PHP --- PHP = (PHP)’ 

must be mapped to a connected path along the edges 
of the cube. (A node of the cube is on an edge if it 
lies on 2 or more faces.) This is because each H must 
be adjacent to two P’s and the only nodes on the cube 
which are adjacent to two non-cube nodes are the nodes 
along the edgesws For example, see Figure 2. 

(a) p 

Figure 2: An embedding of (PHP)7 in the cubic lattice. 
In (a), the H% are on an edge of the cube and the P’s reside 
at distance 1 from the surfaces that define the edge. The 
result~mg connectedpath of HYs is shown in (b), whose dashed 
lines denote the existence of a path of two P’s above the 
surfaces. 

Our goal is to convert a MODIFIED BIN PACK- 
ING problem L? into a string folding problem. We ac- 
complish this task by creating a string S which con- 
tains substrings corresponding to the bins of 23 as well 
as the items of L3. These substrings are formed from 
specific combinations of (PHP)*, (PHHP)‘, and P’. 
This means that all the action (or difliculty in folding) 

‘The fact that the H’s form a connected path follows from 
the preceding discussion. 

will take place on the surface of the cube. In particular, 
the bins and items of B will correspond to substrings of 
S for which the H’s are all embedded on a single face 
of the cube. 

I 

The most diflicult part of the reduction is construct- 
ing substrings of S that correspond to the bins of B. In 
particular, we need to show that if the H’s of S pack 
perfectly into a cube, then the substrings of S corre- 
sponding to the bins must be mapped so as to partition 
the face of the cube into K “bins” each with B surface 
nodes. Insuring that no other fold is possible is what 
makes the proof diflicult. 

It is easier to create substrings corresponding to items 
of B. Essentially, we will use a substring (PHHP)S(U)12 
for each item u with size S(U) in B. Note that the H’s 
in such a string must occupy precisely S(U) nodes on 
the surface of the cube. Since these nodes correspond 
to a connected path on the surface, the path must lie 
entirely within one bin. This will mean that the Ttem 
substrings” can be perfectly packed on the surface if 
and only if the corresponding bm packing problem is 
solvable (which is the main goal). 

In order to connect all the substrings together in 
S, we will use long runs of Pk. This will give us the 
flexibiity needed to place “item substrings” that are 
adjacent in S in bins that are far apart on the surface 
of the cube (as may be necessary in the bm packing 
solution). Of course, this leaves the problem of how 
to embed the strings of Pk. We solve this problem by 
using methods developed in the related field of 3D VLSI 
wire routing. 

We are now prepared to present the formal reduc- 
tion. As anticipated, the string S will consist of many 
copies of PHP, PHHP, long runs of P’s, and a single 
long run of H’s. The role of PHP, PHHP, and P* in 
S has been explained at a high level. The role of H’ is 
simply to HI up the inter& nodes of the cube. 

3.2.2 The Reduction 

Consider any MODIFIED BIN PACKING problem 8. 
Let 

q = 2max(K, [B”“l), 

= q(2q + 1) + 2, and 
; = (2q-l)(n-2), 

where B and K are bm packing parameters. Note that 
q, n, and T are all even integers and that 2(T - B) > 
T. Define c to be a sufficiently large constant that will 
be specified later. The corresponding PERFECT HP 
STRING-FOLD problem consists of packing the string 
SB defined as in Figure 3. 

3.2.3 Using a Bin Packing to Fold .Sa 

We first show how to fold the string So so that the H’s 
form an TZ x n x n cube provided that we are given a solu- 
tion to the corresponding MODIFIED BIN-PACKING 
problem B. The explanation is divided into four parts. 
First we show how to pack all but the front face of the 
cube of H’s. Next we show how to construct the “walls” 
for the “bins” on the front face. Then we show how to 
pack the substrings corresponding to the items into the 
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slj = (PHP)s”-lo (PHHP)(n-2)2’2 (PHPy2P4 
( (p~flp)(=-2)*/2p7 > 3 (pflflp~(74)~/2-1 pH(~-2)%2p8tq 
((PHP)yPHHP)(“-2)‘2(PHP) 2qt1p4(pHHp)(n-2)/2(pHp)qp2q)q pH(p2qtQr)q-lp 
(P”(PHHP)-=qq (PcyPHHP)=‘2)q-K n (P=n(PHHP)+q 

UEU 
Figure 3: The construction. We use the notation nl, S; to denote the string Sr I&l. - - I$. 

bins. Finally, we show horn to pack the long strings of 
F’s that connect the “item” substrings in S. 

Packing All but the Front Face of the Cube 
We begin by Ming in each node in nine of the tsveIve 

edges of the cube with an H from the string (PBP)s”-lo- 
In particular, we fiI.I nodes in the top face edges starting 
at position6 (a - 2, a - 1, n - 1) tith H’s, move counter 
clockwise to position (n - 1, n - 1, n - l), down an edge 
to position (n - l,O, n - l), and dock-&se around the 
bottom face to position (n - 2,0, n - 1). (See Figure 4) 
The P’s from (PHP)sn-‘o are embedded in nodes ad- 

(OJI-1.0) 

(0.0.0) 

Figure 4: The n x n x n cube with each corner position 
labeled with its coordinate triple (i,j,k). Arrows indicate 
the order in which the first nine edges are filled. The start 
and end nodes on this path are also indicated. 

jacent to the cube so as to keep the string connected. 
The first P is embedded in node (n-2, n-l, n) and the 
last one is embedded in node (n - 2,0, n). For example, 
see Figure 5. 

We next embed (PHHP)(“-2)2/2 so that the H’s 
fi.U the back face of the cube in a vertical snake pat- 
tern. Note that because each dimension of the face 
(n - 2) is even, we will abvays end on the same side 
that we began. See for example Figure 6. We then 
embed (PHP)“-2 so that the H’s fill the ((O,O,n - 

‘Henceforth, we vi11 refer to each position in the n x n x n 
cube by a coordinate triple (i,j, k), where 0 5 i, j, k 5 n - 1. 

m-u-1 

P 

Figure 5: An example of horn the ((0,n - 1,n - l),(n - 
l,n-l,n-1)) edgeofthecubeis fllledinwith n-l PHP’s. 
(Thecomer(n-l,n-l,n-l)isiXedaspartofthe((n- 
l,O,n - l),(n - 1,n - 1,n - 1)) edge of the cube.) The 
first P is in position (n - 2,n - l,n), and the first H is in 
position (n - 2,n - l,n - 1). ‘l’be path moves right to left, 
with only H’s labeled in this figure. The last H is in position 
(O,n-l,n- l)andthelastPisin(-l,a-l,n-1). 

1)s (O,n - 1, n - 1)) edge of the cube (skipping the cor- 
ners uhich are already filled). We next embed P4 to 
get from node (0, n - 2, n) to node (-2, n - 2, n - 2) 
so that we can enter the left face without hitting any 
previously fihed nodes. We then fiII in the left, bot- 
tom, right, and top faces sequentially with H’s from 
((PHHP)(n-2)2/2P7)3(PHHP)(n-2)112-1, running the 
snake pattern so as to end up incident to the next face 
in the sequence as in Figure 7. (The P7 term is used 
to get from the end of one face to the start of the next. 
We need seven P’s since nodes along the edges of the 
cube have their two missing neighbors outside the cube 
already filled in.) The last two nodes ((n - 2, n - 1,1) 
and (n-3, n-l, 1)) on the top face are left temporariIy 
open in order to enter and exit the interior. 

The interior of the cube is reached through the next 
to last top face node (n - 3, n - 1, l), which is now tiIIed 
in with an H from PH. The interior of the cube is 
then fiIIed with (TZ - 2j3 H’s in a truncated snake pat- 
tern aIternating direction each layer, leaving the ((n - 
2,0, l), (n-2, n-l, 1)) column open until the end when 
it is used to move back to the node (n-2, n-l, l), which 
is embedded with the last H from H(“-2)3t2. Then 8+q 
P’s are used to take us to position (n - 1, n - 1 -q, -2). 
(We use 8 + q P’s so as to route around previously em- 
bedded P’s) 

Packing the Front Face: Making the Bins 
At this point, the entire cube is filIed with H’s except 

for the n x (n - 2) region on the front face. We next 
embed q sets of “bin walIs” on this face as follows. The 
walls for each bm are fihed in with the H’s from the 
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Figure 6: The n x n x n cube with the back, left, bottom, 
right, t,op, and tiont faces labeled. The back face is 6lled 
with (n - 2)2/2 PHHP’s. The path indicates the order in 
whichit is filled, startiugat node (n- 2,l,n-1) and ending 
at node (1, 1, n - 1). Notice that the path through the face 
ends on the same side it began because n is even. The P’s 
are not shown but would appear diagonal to this face. There 
isanarrow on the ((O,O,n- l),(O,n- l,n-1)) edge of the 
cube, which is filled in immediately after the back face, to 
indicate the order in which it is fiued. 

as shown in Figure 8. In particular, each bm wall con- 
sists of a path of q Ps embedded along an edge (called a 
q&ring), followed by a path of n - 2 H’s embedded in a 
straight hue across the face, followed by a path of 2q + 1 
H’s embedded along the other edge (called a (29 + I)- 
sting), followed by a path of n - 2 H’s embedded back 
across the face, followed by a path of q H’s embedded 
along the original edge. (Note that since q + 1 is odd, 
four P’s are needed to connect the (2q+ l)-string to the 
second horizontal path across the face. In addition, we 
need a path of 2q P’s to connect the end of one bin wall 
to the beginning of the next bm wall This path runs at 
distance 2 from the cube so as not to intersect P’s used 
for the edge segments of the bin walls.) 

The bin walls are completed with H’s from 
PH(P ‘q+‘H)q-lP (called a specicd q-string), as shown 
in Figure 8. There will be one H used to finish off each 
of the q bin wrdls. These H’s are separated by 2q rows 
in the face, and we use 2q + 6 P’s to connect them since 
we need to route the path at distance 3 from the cube 
in order to avoid previously embedded P’s (from the 
q-strings and the paths that connect q-strings). (Note 
that the 2q P’s between the last q-string and the first 
H of the special q-string are really not needed, but are 
included to simplify the expression for SB- They can 
be embedded by moving away distance q from the cube 
and then returning.) The last P in the special q-string 
is embedded at node (n - 1, n - 2 - q, -1). 

Figure ‘7: The n x n x n cube with paths to indicate the 
order-in which the left, bottom, right, and top faces are 6lled. 
The start and end nodes of each face are labeled as follows: 
leftface,SL = (O,n-2,n-2), audF’ = (O,l,n-2); bottom 
face,Sg = (l,O,n--2),andFg = (n-2,O,n--2);rightface, 
S, = (n - l,l,n - 2), and FR = (n - 1,n - 2,n - 2); top 
face,S~=(n-2,n-l,n-2),andF~=(n-4,n-l,l). 

. : . 
i 

Figure 8: The front face of the cube partitioned into p 
%ii.” The top and bottom edges of the face have previously 
been filled in. 

Packing the Front Face: Placing the Items 
At this point, the nodes on the front face that have 

not been tilled have been partitioned into q (n - 2) x 
(29 - 1) rectangular regions that we will refer to as bins 
Bl,... , Bq. We next fill these bins with the remaining 
H’s from Sa. 

The remainder of SB consists of sequences of the 
form 

PCn(PHHP)=‘2 

which we call an k-item-string. In particular, the re- 
mainder of SB consists of q (T - B)-item-strings, q - k 
B-item strings, and one s(u)-item-string for each item 
UEUillB. 

We will embed one (2’ - B)-item-string in each bin 
and one B-item-string in each of bins BK+I, . . . , B,. 
This will leave us with K bins each with B unfilled 
nodes. These nodes are filled with the s(u)-item-strings 
using the solution to L? as a guide. In particular, if 
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u E U; in the BIN PACKING solution, then me embed 
an s(u)-item-string in Bi. As a result, every face node 
will be Qled. 

The item-strings are embedded so as to form a snak 
like pattern within each bin. The exact order or loca- 
tion of the item-strings within the bii does not matter, 
provided only that the tirst H of each item-string is em- 
bedded in an even node of the cube. (A node (i,j,k) 
issaidtobeeerenifandonIyifi+j+k=OmodZ.) 
Since each item-string has an even number of H’s, we 
wiI.I then be assured that the Iast H of each item-string 
is embedded in an odd node of the cube, and that each 
item-string will consume an equal number of even and 
odd cube nodes. 

Packing the Connecting Strings of P’s 
The remaining difficulty is to connect the last H in 

one item-string with the first H in the next item-string 
in SO (which might be located in a bin that is far away 
in the cube). The connection is made by a path of cn+2 
Pk. Note that this path of P’s has the correct parity 
(even) since we are connecting H’s on the surface of the 
cube with differing parities. 

The problem of embedding the connecting paths is 
equivalent to the problem of connecting pairs of end- 
points on a 2-dimensional surface with wires that run in 
a nonintersecting fashion through a 3-dimensional grid 
that lies above (and beyond) the surface. Moreover, we 
require that the wires all have the same length cn + 2 
since they correspond to substrings consisting of cn+2 
Pk. 

Using methods from 3D VLSI wire routing [lo], we 
can find a way to route the connecting paths for any col- 
lection of pairs of endpoints on the surface. In fact, the 
solution can be considered to be well-known except for 
the constraint that all the paths have the same length 
cn +- 2. In this situation, we will route the paths using 
nodes of the form (i,j,k) where k < 0. (Note that no 
nodes with k < -3 have been used thus far nor have 
any nodes of the form (i,j,k) been used where k < 0 
and (i, j, 0) is used for a string-item.) 

In order to route the connecting paths in a non- 
intersecting fashion, we will use the nodes with k < -3 
to form a bdimensional crossbar switch. The inputs to 
the switch can be thought of (without loss of generality) 
as nodes with 0 < i, j 5 n - 1 and k = -4. The outputs 
will be at nodes&h 0 2 i,j <n-l and k = -lOn+2. 
The switch can connect the inputs to the outputs in any 
permutation with node-disjoint paths. The construction 
of the paths for any fixed permutation is provided in the 
following lemmas, most of v~hich are well known in the 
VLSI routing literature. 

Lemma 3.3 Gieren a .%dimensional h x (2h - 1) array 
with nodes {(i, j) 10 5 i < h, 0 5 j < 2h - l), it 
is possible to route non-intersecting paths of length at 
most 2(h - 1) from node (0,j) to node (h - 1,2j) for 
O<j<h. 

Proof. Immediate from the example shown in Figure 9. 
Cl 

Lemma 3.4 Given a 3-dimensionaZ(2h-1) x (2h-1) x 
(2h - 1) array, it is possible to route non-intersecting 
paths of length at most 4th - 1) from node (0, j,k) to 
node (2h - 2,2j, 2k) for 0 5 j, I < h. 

(3~2) (0,X) 
Figure 9: Routing non-intersecting path of Iength at most 
2(h-l)from(O,j)to(h-1,2j)forO<j<hinanlax(2h-1) 
grid for h = 4. Note that no vertical segments are used in 
the last column. 

Proof. We iirst route paths of length at most 2(h - 1) 
from (0, j,k) to (h-1,2j,k) using Lemma 3.3, and then 
of Iength at most 2(h - I) from (h - 1,2j,k) to (2h - 
2,2j,2k) using Lemma 3.3 in the other dimension. 0 

Lemma 3.5 Given a 2h x (3h-2) x2 grid, it is possible 
to route non-intersecting paths of length at most 6h - 5 
from node (0,2j,O) to node (2h-1,2x(j), 0) for 0 < j < 
h, where Jo is any permutation on [0, h - 11. 

Proof. As ikstrated in Figure 10, each path but one 
uses two columns and one row above row 2h - 2. The 
remaining path uses just one column and no row above 
row2h-2. 0 

Figure 10: Routing non-intersecting paths of length at 
most 6h - 5 from (0,2j, 0) to (2h - 1,27r(j), 0) for 0 5 j < h 
ina2hx(3h-2)x2gridwhereh=4anda=(O231). 
Horizontalsegments arerouted in the bottomlayer (i.e., the 
third coordinate is 0) and vertical segments are routed in 
the top layer (i.e., the third coordinate is 1). Note that no 
vertical segments are used in the last cohmm, so two such 
routings could be placed side by side without conflict. 

Lemma 3.6 The elements of an h x h matrix can be 
permuted in an arbitrary fashion by first permuting the 
elements within each row, then permuting the elements 
within each column, and then once again permuting the 
elements within each row. 

Proof. See Theorem 1.16 in Leighton [17]. •I 
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Lemma 3.7 Given a (6h - 2) x (3h - 2) x (3h - 2) 
grid, it is possible to route non-intersecting paths of 
length at most 18h - 15 from node (0,2j, 27;) to node 
(6h - 3, 2q(j, k),2xo(j, k)) for 0 2 j,B < h where x = 
(~1, ~2) is any permutation on [O, h - I] x [0, h - I]. 

Proof. We use Lemma 3.6 to express H as a collec- 
tion of permutations within the rows, followed by a col- 
lection of permutations within the columns, followed 
by a collection of permutations within the rows. The 
first collections of row permutations is routed in nodes 
(i,j, h) with 0 < i 2 2i - 1 using Lemma 3.5 for each 
row. The col& oermutations are routed in nodes with 
3h - 1 < i < 4h L 2 using Lemma 3.5 for each column. 
The f&l set of row permutations is routed in nodes 
with 4h - 2 5 i 5 6h - 3, agti using Lemma 3.5 for 
each row. (Note that we have spaced the endpoints of 
the paths so as to allow each row/column permutation 
to have dedicated access to a two-layer grid. Note also 
that we can use nodes with i = 2h - 1 for both row 
and column permutations since edges on those levels 
are used only by the column permutations. The nodes 
with i = 4h-2 can be reused in a similar fashion.) The 
length of each path is then 3(6h - 5) = 18h - 15. 0 

Lemma 3.8 Given a (lOh-6) x (3h-2) x (3h-2) grid, 
it is possible to route non-intersecting paths of length 
at most 26h - 23 from node (O,j,k) to node (IOh - 
6, ~1 (j, k), zrz(j, 7~x7)) for 0 2 j, k < h where zr = (XI, ~2) 
is any permutation on [0, h - l] x [0, h - l]- 

Proof. We fist use Lemma 3.4 to connect (O,j, k) to 
(2h - 2,2i, 2k) using a path of length at most 4(h - 1). 
lT7e then use Lemma 3.7 to connect (2h - 2,2j,2k) to 
(8h - 5,2rrl(i,k),27rs(j, k)) using a path of length at 
most 18h-15. (Note that the nodes with i = 2h-2 play 
the role of nodes with i = 0 in Lemma 3.7.) Then we use 
Lemma 3.4 agam to connect (8h--5,2z1 3, (' f4,2~2(j,W 
to (1Oh - 7,x1 (i, k), xz(j, k)) using a path of length at 
most 4(h - 1). 0 

We are now ready to embed the paths of length cat-2 
that connect the item-strings. ?Ve first use four P’s for 
each end of each item-string to get to distance four from 
the front face of the cube (i-e., so H = -4). We then use 
Lemma 3.8 with h = n to permute the ends of the item- 
strings so that endpoints that are adjacent in Sg will be 
adjacent on the plane of the lattice with k = -101~ + 2. 
At this point, we could complete the connections for 
each path by adding a single edge. Overall, each path 
would have length at most 

2(26n-23+4)+-1=52n-37. 

W’e must insure that each path has length precisely cn+ 
2, however. This can be accomplished by setting c = 52 
and routing each path as far as it needs to go away 
from the cube in a loop in order that it will have length 
precisely 52n + 2. (Of course, we need to be sure that 
the parrty of the path extension is correct, but this has 
already been assured by the embedding of the item- 
strings.) 

This concludes the proof that Sa can be embedded 
in an O(n) x O(n) x O(n) cube so that the EE’s form an 
n x n x n cube, provided that Li is solvable. 

3.2.4 Using a Fold of SO to Solve BIN PACKING 

We next show how to solve the MODIFIED BIN PACK- 
ING problem B provided that we are given a solution 
to the PERFECT HP STRING-FOLD problem for Sa. 
Throughout, we assume that the sequence Sa is folded 
so that the H’s form a perfect n xn xn cube. The follow- 
ing simple facts, which were proved above, are crucial 
to our analysis. 

Fact 3.9 Any singZe H surrounded by P’s in Sa (e.g., 
PHP) must be embedded in a node that is on the edge 
of the cube. 

Fact 3.10 Any H that is adjacent to a P in Sa (e.g., 
HP) must be embedded on a face (including its edges) 
of the cube. 

Fact 3.11 If a pair of H’s are separated by two P’s 
in SO (e.g., HPPH), then the H’s are embedded in 
adjacent positions on a face of the cube. 

The explanation is divided into two parts. First we 
show how the edges of the cube must be filled with H’s 
from So- This is the part of the proof where we argue 
that certain substrings of Sa must fold so as to form bins 
of a fixed size on the surface of the cube. In the second 
part, we show that the “item substrings” in Sa must 
be packed on the surface of the cube so as to provide a 
solution to the bm packing problem B. 

Forming the Bins 
By the construction of Sa, there are 12(n - 2) + 8 = 

12n-16 single H’s surrounded by P’s, which is precisely 
the number of nodes on the edges of the cube. The 
manner in which these H’s are mapped to nodes on 
the edges of the cube is highly constrained by Sa, and 
it is critical to the proof. For example, by Facts 3.9 
and 3.11, the 9n - 10 H’s in the substring (PHP)g”-lo 
must be mapped to a contiguous path of nodes along the 
edges of the cube. There are several ways that this can 
be accomplished, but each such mapping must leave at 
least one neighbor of at least six corner nodes unfilled. 
This is because corner nodes have an odd number of 
neighbors on the edges and a simple path can only till 0 
or 2 of them unless the path ends at a neighbor. Since 
the path can only have two endpoints and since it is so 
long, it must fill all eight corner nodes as well as every 
node in a total of nine edges of the cube. Moreover, 
the three remaining unfilled edges of the cube (unfilled 
except for their endpoints, that is) must not share a 
corner. The nodes along one of the remaining three 
edges must then be filled with H’s from the substring 
(PHP)“-2. This leaves precisely n - 2 nodes unfilled 
for each of two nonadjacent edges of the cube. 

By the definition of SU, the remaining two edges of 
the cube must be filled with H’s from substring 

Note that the single H’s iu this string can be naturally 
grouped into three classes as follows: q-strings of the 



form (PHP)“, (2q + l)-sttings of the form (PHP)*q+l, 
and a special q-stting of the form PH(P2q+6H)q-‘P. 
There are 2q q-strings, q (2q + l)-strings, and 1 special 
q-string in SB. Since the comers of the cube are already 
filled, it is clear that each q-string and (2q + 1)-string 
must be mapped to nodes within a single edge of the 
cube. In addition, since 2q+6 < n and since the unfilled 
edges are nonadjacent, the points in the special q-string 
must also be mapped to nodes within a single edge. The 
following lemma will help us characterize more precisely 
horn the q-strings, (29 + 1)-strings, and the special q- 
string are mapped to the two unfilled edges. 

Lemma 3.12 If an edge is perfectlypacked with q-strings 
and (2q+l)-strings, then it is per-ectlypacked with only 
(29. -I- 1)-strings. 

Proof. Suppose for the purposes of contradiction that 
we could perfectly pack the edge with i q-strings and j 
(29 + I)-strings, where i > 0. Then iq + j(2q + 1) = 
1~ - 2 = q(2q + l), which implies that j G 0 mod q- If 
j = 0, then i = 2q f- 1, which is a contradiction since 
there are only 2q q-strings. Ifj 1 q, then i = 0, which is 
also a contradiction. Hence, the edge is perfectly packed 
by only (29 + 1)-strings. 0 

As a consequence of Lemma 3.12, we know that the 
n. - 2 nodes in one of the unfilled edges of the cube get 
filled with H’s from the q (2q f- 1)-strings. The n - 2 
nodes in the other nnfllled edge get tilled with H’s from 
the 2q q-strings and the special q-string. 

We can also deduce that the trvo edges are on op 
posite sides of the same face of the cube. This is be- 
cause each (2q + 1)-string is separated from a q-string 
by (PHBIP)(“-*)12, which accounts for distance n - 2 
between the respective edges. Since the edges cannot 
share a corner, they must be on opposite sides of the 
same face. 

In fact, we can say much more about the manner in 
which the H’s from 

are packed. First, the (29 + I)-strings form a partition 
of one edge into q intervals of length 2q+ 1. Second, the 
strings of the form (PHHP)(n”)‘2 that surround each 
(2q + I)-string correspond to straight lines through the 
face containing the opposing edges. This is because the 
only way to get betsveen two opposite edges with a path 
of length a - 2 H’s is by a straight line.7 Hence, the 

‘To be wry precise, wit need to argue that the first H in 
Ps(PHHP)(n-2)/’ must be adjacent to the last H in the pre- 
ceding (2qfl)-string. In fact, the argument is somewhat delicate 
since it is not generally true that H’s which are separated by six 
P’s in .!7~ need to be adjacent in the embedding. Holyever, in 
this case, xIe know that the P’s from the (29 + l)-strings occupy 
every node of the form (0, j, - 1) where 1 5 j 5 n - 2. Moreover, 
the last P for each (24 + I)-string is forced to occupy a node of 
the form (-1, j, 0). In order to get from (-1, j,O) to the front 
face without intersecting the cube or the P’s in nodes (0, *,-1), 
ve must first go to node (-1, j, -2), and then to (I, j, -2) and 
then to (l,j, 0), which requires six P’s overall. In fact, this is the 
only non-edge face node that is legally reachable by six or fer7er 
P’s from (O,j, 0), given that the first P must reside at (-1, j, 0). 

H’s in 

must partition a face of the cube into q rectangular re- 
gions (called “bins”), each containing (n - 2)(2q - I) 
unused face nodes. For example, see Figure 8. 

Packing the Items into Bins 
At this point in our analysis, we have filled all the 

nodes in the edges of the cube as well as some of the 
nodes in a face of the cube. As a result, the surface of 
the cube has been partitioned into five regions (faces) 
of sire (n - 2)* and q regions (bins) of sire T = (n - 
2)(2q - 1). Into these regions, me must pack all the 
H’s from four copies of (PHHP)(n-2)2/2, one copy of 
(pHHp)(‘+*)2/*-l , q copies of (PHHP)(T-B)/2, q-K 
copies of (PHHP)B12, as well as one copy of 
(PHHP) ‘fU)/* for each item ti E U. We also need to 

pack two H’s from H(n-2)3+2 into the remaining face 
nodes. 

Since the H’s in any string of the form (PHHP)’ 
must form a contiguous path on the surface of the cube 
(Fact 3.11), they must all be packed into the same face 
or bin. This constraint severely restricts our options 
for locating the H’s. For example, the five empty faces 
must become filled with H’s from the four copies of 
(PHHP)(“-2)212, the single copy of (PHHP)(“-2)2/2-1, 

and (without loss of generality) two H’s from H(“-2)3t2. 
(These strings are too long to fit in the bins.) Each of 
the q bins gets one of the q copies of (PHHP)(T-B)/2. 
(This is because the bins are not large enough to con- 
tain two copies since 2(T - B) > T.) In addition, q - K 
bii get one copy of (PHHP)B/2, which completes the 
filling of those bins. 

At this point, we are left with K nonempty bins, each 
with B available face nodes, and one copy of 
(PHHP)“(“)‘* for each item u E U. Since xuEr, s(u) = 
BK, these strings must pack perfectly into the bins and 
so the packing of the string into the cube provides a 
solution to the MODIFIED BIN PACKING problem. 

4 Discussion 

In this paper, me have shown that protein folding in the 
HP model is NP-complete. We have thus settled the 
recurring open question about the complexity of protein 
folding in this model [21]. 

Our work also complements existing efforts to char- 
acterize various hardness aspects of protein folding [20, 
21, 13, 9, 23, 221. In particular, our proof shows that 
any reasonably fast protein folding algorithm will have 
to rely on aspects other than just hydrophobicity con- 
siderations. 

Our methods do not apply to the 2D square lattice, 
although the 3D cubic model that we study seems to 
be more relevant to the actual protein folding problem. 
Nor does our proof directly apply to the 3D tetrahe- 
dral lattice, which has been proposed because it avoids 
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the parity problem of the cubic lattice. Although our 
methods do not rely on parity arguments, they fail be- 
cause we cannot utilize as easily the different number of 
missing neighbors between edge and face nodes in the 
minimum configuration arrangement. 
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