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When compared with eukaryotes, bacteria, including
eubacteria and archaebacteria, accommodate a rather
narrow range of variation in genome size. Whereas
eukaryotic genomes vary in size by four orders of
magnitude (from about 107–1011 basepairs), there is
only about one order-of-magnitude difference across
bacterial genome sizes1–3. However, the difference in
the ranges of genome size in eukaryotes and bacteria
is not reflected in corresponding differences in gene
number. Unlike eukaryotes, the genome size variation
in bacteria translates almost directly into biochemical,
physiological and organismal complexity because 
the majority of sequences are functional protein-
coding regions (Fig. 1). Among bacteria for which
complete genomic sequences are available, a tenfold
variation in genome size is reflected by a similar
difference in total gene number4,5 (Table 1). By
contrast, yeast and humans have genomes that differ
by almost 300-fold in size, yet they have only a sixfold
difference in gene number6–8.

What is the source of variation in genome size in
bacteria? On the basis of the distribution of genome
sizes and the orientation of apparently duplicated
genes, it was once thought that new bacterial genomes
evolved by repeated events of genome doubling1,9,10.
However, subsequent analyses of additional genomes
provided several lines of evidence against this
hypothesis. First, related bacteria having genomes of
similar sizes often contain very different complements
of genes, and arrangements of duplicated genes are
not consistent across taxa11,12. Second, the variation in

Although bacteria increase their DNA content through horizontal transfer and

gene duplication, their genomes remain small and, in particular, lack

nonfunctional sequences. This pattern is most readily explained by a pervasive

bias towards higher numbers of deletions than insertions. When selection is not

strong enough to maintain them, genes are lost in large deletions or inactivated

and subsequently eroded. Gene inactivation and loss are particularly apparent

in obligate parasites and symbionts, in which dramatic reductions in genome

size can result not from selection to lose DNA, but from decreased selection to

maintain gene functionality. Here we discuss the evidence showing that

deletional bias is a major force that shapes bacterial genomes.
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Fig. 1. Association between genome size and gene number in bacteria.
Numbers include protein-coding and RNA genes (R2 = 0.945). When the
number of annotated pseudogenes is added to the number of
functional genes, Mycobacterium leprae falls on the regression line.
Taxa are listed in Table 1.
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Table 1. Characteristics of sequenced prokaryotic genomes

Taxonomic Genome % occupied Total Average Pseudogene Mean Median 

group size (bp) by genesa gene gene numberb spacer spacer 

number length (bp) lengthc (bp) lengthc  (bp)

Eubacteria

Mycoplasma genitalium Low GC Gram + 580 074 90.4 481 1094 – 116.0 4

Buchnera aphidicola γ-Proteobacteria 640 681 87.9 601 937 8 127.5 74

Ureaplasma urealyticum Low GC Gram + 751 719 92.5 652 1069 – 86.9 37

Mycoplasma pneumoniae Low GC Gram + 816 394 88.8 732 812 – 124.9 21

Borrelia burgdorferi Spirochaetales 910 724 94.2 873 986 –e 60.1 19

Chlamydia trachomatis Chlamydiales 1 042 519 90.9 937 1013 – 101.5 53

Chlamydia murinarum Chlamydiales 1 069 411 90.9 949 1029 – 102.6 43

Rickettsia prowazekii α-Proteobacteria 1 111 523 76.0 871 971 12 306.2 123

Treponema pallidum Spirochaetales 1 138 011 93.1 1082 986 – 72.9 35

Chlamydophila pneumoniae J138 Chlamydiales 1 228 267 89.6 1110 997 – 115.5 52

Chlamydophila pneumoniae AR39 Chlamydiales 1 229 858 89.2 1152 956 – 115.7 49

Chlamydophila pneum. CWCL029 Chlamydiales 1 230 230 88.8 1097 1000 – 126.2 55

Aquifex aeolicus Aquificales 1 551 335 93.7 1574 930 – 62.5 10

Campylobacter jejuni ε-Proteobacteria 1 641 481 94.3 1654 939 20 56.4 8

Helicobacter pylori J99 ε-Proteobacteria 1 643 831 90.1 1491 996 –f 108.9 23

Helicobacter pylori 26695 ε-Proteobacteria 1 667 867 88.4 1553 952 –f 124.9 25

Haemophilus influenzae γ-Proteobacteria 1 830 138 87.0 1745 914 – 136.5 68

Thermotoga maritima Thermotogales 1 860 725 93.8 1895 927 – 60.7 6

Neisseria meningitidis strain A β-Proteobacteria 2 184 406 82.7 2121 853 56 178.0 85

Pasteurella multocida γ-Proteobacteria 2 257 487 88.9 2015 998 – 124.7 64

Neisseria meningitidis strain B β-Proteobacteria 2 272 351 78.6 2096 853 –g 231.9 94

Lactococcus lactis Low GC Gram + 2 365 589 84.7 2268 882 – 159.7 96

Xylella fastidiosa γ-Proteobacteria 2 679 306 83.8 2822 797 – 154.4 76

Deinococcus radioduransd Thermus/ 3 060 986 88.7 2996 960 – 122.1 44
Deinococcus

Mycobacterium leprae Actinobacteria 3 268 203 76.8 2770 908 1081 546.4 106

Synechocystis PCC6803 Cyanobacteria 3 573 470 87.0 3219 969 – 143.9 103

Caulobacter crescentus α-Proteobacteria 4 016 947 90.5 3794 961 – 201.6 62

Vibrio choleraed γ-Proteobacteria 4 033 464 86.4 3949 876 – 136.6 78

Bacillus halodurans Low GC Gram + 4 202 353 84.9 4066 879 – 156.4 87

Bacillus subtilis Low GC Gram + 4 214 814 87.8 4221 880 – 121.9 72

Mycobacterium tuberculosis Actinobacteria 4 411 529 90.5 3970 1009 9 105.2 49

Escherichia coli K12 γ-Proteobacteria 4 639 221 87.9 4405 1027 – 128.8 63

Pseudomonas aeruginosa γ-Proteobacteria 6 264 403 89.5 5640 995 – 116.6 68

Mesorhizobium loti α-Proteobacteria 7 036 074 86.4 6752 905 – 142.2 73

Averages 88.0 1860 947 147.0 57

Archaea 

Thermoplasma acidophilum Thermoplasmales 1 564 906 86.0 1526 897 – 134.3 65

Thermoplasma volcanium Thermoplasmales 1 584 804 85.7 1548 880 – 146.1 53

Methanococcus jannaschii Methanococcales 1 664 970 87.8 1758 834 – 115.6 49

Pyrococcus horikoshii Thermococcales 1 738 505 84.4 2113 814 – 128.8 13

Methanobacterium Methanobacteriales 1 751 377 90.8 1916 832 – 83.8 37
thermoautotrophicum

Pyrococcus abysii Thermococcales 1 765 118 81.8 1765 912 – 93.5 14

Halobacterium sp. Halobacteriales 2 014 239 88.0 2110 841 – 115.3 56

Archaeoglobus fulgidus Archaeoglobales 2 178 400 91.7 2420 832 – 74.5 13

Averages 87.0 1983 855 112.0 37

aIncludes RNA genes. 
bIncludes only annotated chromosomal pseudogenes.
cSpacers between overlapping genes are scored as zero.
dChromosomes 1 and 2 combined.
eAlthough no chromosomally encoded pseudogenes have been identified, Borrelia contains many plasmid-borne pseudogenes. 
fSequenced genome contains no annotated pseudogenes, but at least six were identified in other strains.
gSequenced genome contains no annotated pseudogenes, but at least five were identified in other strains.
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Fig. 2. Frequency of deletions and insertions in bacterial genomes.
Frequencies based on comparative analyses of pseudogenes with their
functional counterparts from a closely related species, generally from
the same genus, and with at least one functional gene in a closely
related outside reference species. Bars represent the average total size
of deletions and insertions per pseudogene. Numbers at tops of bars
represent the numbers of each type of event. Analyzed pseudogenes
were: hmbR, opaA, opaB, yedI*, fhuA, porA, pilC2, opcB (Neisseria
meningitidis, Neisseria gonorrhoeae); kdpA, kdpC, ast, glpT’*, cj0565,
cj794** (Campylobacter jejuni); fhuA, cytochrome P-450, IS1380, egl,
groEL (Rhizobium sp.); vacA, oipA, iceA, rfaJ, OMP29, HP1589
(Helicobacter pylori); ahcY (Sulfolobus solfataricus); groES2
(Rhodobacter sphaeroides); msp1b1pg (Anaplasma marginale); ORF3,
aatA (Agrobacterium rhizogenes); epsD (Azospirillum brasilense);
oxyR, Rv1503c-Rv1504c, hypB, Rv3349c** (Mycobacterium
tuberculosis); bfrB, csp, ackA-pta, fadE7, cysM (Mycobacterium leprae);
vmp, vlp, BBG20**, BBQ71**, BBQ55 (Borrelia sp.); hmw2, lppA
(Mycoplasma sp.); treP, hblB, transposase, s14, fhuC (Bacillus sp.); cpe,
p-21 (Clostridium sp.); recombinase, sat4 (Staphylococcus sp.); hisG,
hisC (Lactococcus lactis); ace (Enterococcus faecalis). Genes marked
with an asterisk are those in which a functional equivalent in the same
bacterial group could not be found; two asterisks indicate that no
suitable homolog could be found in an outside reference species.

The compactness of bacterial and organellar genomes is often
attributed to selection for rapid replication of DNA (Refs a–g). It is
known, for example, that mitochondria with chromosomal
deletions accumulate with time in animal tissuesh and that plant
plastids with deletions can accumulate in vitroi. Although
organelles are derived from bacteria, the latter have a complex cell
structure, and chromosomal replication rate has little effect on cell
division rate. Comparing across diverse bacterial taxa, doubling
times show no relationship with genome size (see Fig. I). Strains of
E. coli can vary by as much as 25% in chromosome length, but
growth rates are not correlated with genome sizej, under either rich
or poor nutrient conditionsk. Moreover, the translational efficiency
of ribosomes and tRNA abundance, not replication rate, are primary
determinants of cell division rates in bacterial isolatesl–n. It is unclear
what selective forces act on growth rates under natural conditions:
wild strains of E. coli are highly variable in their doubling timeso,and
certain intracellular bacteria with reduced genomes display the
slowest growth rates among prokaryotesp. The translational
machinery comprises about half of the dry weight of a bacterial cell,
and the process consumes up to 80% of the cell’s energyq. It is

therefore probable that the profound effects on growth rates of
ribosome kinetics and the translational process mask any influences
of genome size on replication speed.
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Box 1. Replication advantage: organellar and bacterial genomes compared
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Fig. I. Doubling times of bacteria under laboratory conditions do not correlate with
genome size. Data are for 22 species for which doubling times were available in the
literature, and include bacteria from ten major taxonomic divisions.
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genome sizes within a bacterial species is often large
enough to obscure placement into a discrete size
class13. Third, phylogenetic analyses reveal that
bacteria with the smallest genomes are derived from
bacteria with larger genomes14.

Deletional bias in bacterial genomes

Although duplications and resulting paralogous genes
are apparent in many bacterial genomes12, there is
growing evidence that the primary route through
which bacterial species obtain new genes is by lateral
transfer15–17. If lateral gene transfer is an ongoing
process, why are bacterial genomes compact and not
ever-expanding because of the influx of foreign

sequences? The obvious answer is that lineages must
undergo the inactivation and loss of genes, and the
elimination of the corresponding DNA that made up
the genes. This could result if the mutational process
driving the structural evolution of chromosomes is
biased towards DNA loss. This bias could be of two
types. Large deletions might remove one or more
genes in a single event. Alternatively, a gene could first
lose function through point or frameshift mutations to
generate a pseudogene that is eroded and eliminated
by subsequent small deletions. For deletional bias to
lead to the loss of genes and the corresponding DNA,
selection on those genes must be ineffective owing to
low selection coefficients or to small population size.

Bacterial lineages that form obligate, intimate associations with
hosts show a repeated pattern of extreme reduction in genome
sizea–d. Obligate pathogens, such as Mycoplasma, Rickettsia and
Chlamydia, have genome sizes of approximately one megabase
(Mb) or lesse, as do the endosymbiotic bacteria of aphids and
tsetse flies (the bacteria Buchnera and Wigglesworthia,
respectively)f,g. By contrast, free-living bacteria, including enteric
bacteria, which are closely related to Buchnera, have genomes of
3–6 Mb (Ref. e). Because bacterial genomes consist primarily of
genes encoding proteins (Table 1), this large-scale genome
reduction implies a massive loss of genes. Genome reduction
could result from several processes:

Hypothesis 1: Selection favoring small genome size drives the
reduction. This selection could potentially be due to faster
replication or energy savings connected with a small genome
sizeh–k. This hypothesis is often presumed to be true without
direct examination (Box 1).

Hypothesis 2: Increase in the rate of deletions or in the degree of
deletional bias of novel mutations drives the reduction.

Hypothesis 3: Decrease in selection across many loci results in a
large proportion of the genome that is effectively neutral, and
these regions are eliminated by deletional bias in the mutation
pattern. Effective neutrality of genes in newly symbiotic or
pathogenic lineages could occur for several reasons. First, a
portion of this reduction in genome size could be attributable to
the loss of genes that are not required in the intracellular habitat.
For example, genes underlying the biosynthesis of nutrients that
can be assimilated from the host cell are missing in obligate
symbionts and pathogensl–p, and genes underlying cell motility
have been eliminated from the genome of Buchnera, which is
nonmotilec. Second, increased levels of genetic drift, resulting
from the population structure imposed by obligate association
with hosts, could result in the fixation of missense mutations
within genes that are beneficial but unnecessary. For example,
numerous genes underlying DNA repair and genes enhancing
transcription and translation are lacking in bacteria with small
genomes. High levels of genetic drift in endosymbionts and
pathogens are supported by a number of other features
including rapid polypeptide evolutionr, lack of codon

preferencesr, and low levels of polymorphism within speciess.
Third, the habitats within hosts can be relatively benign,
resulting in less stringent selection on the efficiency of basic
cellular processes. Under any of these changes, fixation of
mutations destroying gene functionality increases due to
insufficient purifying selection.

Under Hypotheses 1 and 2, small genomes are expected to be
more streamlined than large-genome counterparts. Whether
driven by greater selection or by increased mutational pressure,
functionless regions should be more effectively eliminated in the
smaller genomes. By contrast, Hypothesis 3 does not predict that
smaller genomes will also be more tightly packed. Under this
hypothesis, deletional bias is ubiquitous in larger and smaller
genomes, and smaller genomes differ in the extent to which
selection counters mutation. Indeed, at some stages one might
predict that genomes undergoing reduction will have more
regions with no function, because they can retain pseudogenes
sequences that have been rendered functionless but have not
been entirely eliminated by selection.

As an initial test of these predictions, we examined the
lengths of spacer regions across the sequenced bacterial
genomes. We consider that a large proportion of these spacers
are functionless, an assumption that is supported by the fact that
their lengths are highly variable, their sequences are not
conserved across strains or species, and some are formed by
remnants of eroded pseudogenes (Table 2). Across the
sequenced genomes, there is no correlation between spacer
length and genome size (Fig. 3), suggesting that genome
reduction is not the result of direct selection favoring elimination
of functionless DNA.

In many cases, fully sequenced small-genome organisms are
phylogenetically distant from fully sequenced large-genome
organisms, making direct comparisons of spacers less
compelling. However, Buchnera aphidicola, the obligate
endosymbiont of aphids, has a very small genome (0.64 Mb)
and is closely related to E. coli, which has a relatively large
genome (4.6–5.5 Mb) (Refs c,f,t). Many regions of synteny are
maintained between E. coli and Buchnera and, within these, are
instances of spacers flanked by the same genes in both species.
We compared the lengths of corresponding spacers in Buchnera
and E. coli to determine the pattern of change in orthologous
regions. Although segments of the Buchnera genome are

Box 2. Testing reductive evolution in intracellular bacteria
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The existence of a deletional bias can be evaluated
by comparing known pseudogenes with their
functional counterparts in the same or other taxa.
Because pseudogenes are functionless and under no
selective constraints, the profile of mutations in these
regions reflects the actual frequency of different
mutational classes18–20. In Rickettsia pseudogenes,
deletions are more common and longer than
insertions20,21. To assess the extent of deletional bias
in bacteria, we surveyed cases of known pseudogenes
in a broad taxonomic range of bacteria (Fig. 2). In
every case, deletions are more frequent than
insertions and have a much greater net effect on
genome size. Here, we are assuming that the

observed deletional frequency in pseudogenes reflects
the pattern of spontaneous mutation and is not
elevated by selection on genome size itself. This
assumption is based on the observation that a single
deletion of one or a few basepairs will alter the size of
the genome by a factor of ~10–6. Thus, even if DNA
replication were to limit the rate of cell division
(Box 1), the selection coefficient on small deletions
would be so small as to approximate zero19.

The comparisons in Fig. 2 are conservative
estimates of the amounts of deleted DNA because
they do not take into account large deletions that
remove all or most of a gene, such that it is absent, nor
genes that have mutated to a degree such that they

rearranged on a chromosomal scale, local gene order and
orientation is maintained for many genome fragments. We
identified all syntenic fragments and determined the spacer
lengths wherever both flanking genes were present in both
species (spacers containing an annotated functional region
were not included). Although spacers can contain regulatory
regions that could be under selection, portions of spacers
consist of nonfunctional DNA, as supported by their extreme AT
bias, lack of sequence conservation and loss of promoter
regions in Buchnerac,u.

The average length and overall size range of orthologous
spacers are virtually identical in the two species and show no
trend towards reduction in Buchnera (Table I; T value = –0.78,
P = 0.82; n = 194). This test could be biased if spacers contain
regions affecting gene expression, raising the possibility that
spacer size is preserved by selection in one or both lineages.
However, because preservation of promoter sequences appears
to be stronger in E. coli, non-neutrality of spacers would bias the
comparison towards smaller spacers in Buchnera, a bias that
would have produced an opposite trend and weighed against
Hypothesis 3. Buchnera lacks promoters in more than 35% of
cases in which the orthologous E. coli region is known to contain
them, and many ribosome-binding Shine–Delgarno sequences
are deteriorated as well. Despite stronger selective constraints
acting on E. coli spacers, the orthologous spacers in Buchnera
have not decreased in size. Thus, the test is conservative and not
biased toward smaller spacers in Buchnera, providing evidence
against direct selection as the basis for reduction in Buchnera
genome size.
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Table I. Lengths of spacers in Buchnera aphidicola (A. pisum) and 

Escherichia coli MG1655

Number Mean length Range Median

(bp) (bp) (bp)

Orthologous E. coli 194 30.8 ± 3.6 0–315  12
spacersa Buchnera 194 31.7 ± 3.1 0–319  15

All spacers E. coli 4403 120.4 ± 2.0 0–1730 63
Buchnerab 586 117.6 ± 6.0 0–1318 74

aSpacers flanked by the same coding genes, excluding spacers with annotated 

regulatory regions.
bExcluding spacers flanking annotated pseudogenes.
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are unrecognizable. For example, intergenic spacers
in Mycobacterium leprae are, on average, more than
five times longer than those in its sister species,
Mycobacterium tuberculosis (Table 1), suggesting the
presence of additional pseudogenes eroded beyond
recognition. Thus, considering that our analysis is
limited to the more conservative comparisons, the
propensity for deletion is profound. Analyses of the

total gene contents in natural isolates of Escherichia
coli show that large deletions also are sometimes
fixed within lineages, removing several genes at
once22. Similarly, at least 25 long deletions were
identified in different strains of M. tuberculosis, with
one event removing as many as 16 open reading
frames (ORFs)36. Large deletions have also been
inferred for intracellular bacterial symbionts23.

These observations suggest that there is a
constant eroding force of deletion that must be
counterbalanced by selection on gene function. 
This requirement for selection to maintain
sequences offers a general explanation for the
paucity of nonfunctional DNA in bacteria. In
addition, it has often been proposed that genome
size, especially that of bacteria in intracellular
habitats, is itself the object of selection; that is, that
the tight packing and small size of bacterial
genomes is an adaptation to promote efficiency or
competitiveness during replication14,24–28. This view
is consistent with any mutational pattern,
including one biased towards deletion, but requires
that fixation of individual deletions is driven by
selection favoring smaller genomes. As noted above,
small deletions would not confer substantial
reduction in chromosome replication rate19, and the
median size of the deletions in the pseudogene
dataset is only 3 bp (Fig. 2). Analyses of sequenced
genomes of different sizes suggest that genome
reduction in intracellular symbionts does not result
from selection (Box 2).

Degraded genes and persistent pseudogenes

The overall proportion of noncoding DNA is fairly
similar (around 12%) among the fully sequenced
genomes of different taxonomic groups (Fig. 3).
These noncoding sequences provide a glimpse of the
effects of deletional bias. For example, the large
number of gene regions conserved between
Buchnera and E. coli allows a direct assessment of
how the extreme reduction of genomes occurs29.
Within regions that show synteny with E. coli,
spacers from Buchnera can be divided into two
categories: ‘ancient’ spacers, which are those flanked
on both sides by the same genes in E. coli and
Buchnera, and ‘amended’ spacers, which are those in
which one or more genes are absent from Buchnera,
but with flanking genes that have the same gene
order as in E. coli (Table 2). The ancient spacers,
which are presumed to be orthologous sequences,
are of similar average length in both species, despite
the fact that Buchnera has undergone massive
genome reduction (Box 2). By contrast, the amended
spacers are over three times longer than the ancient
spacers (Table 2). The most likely explanation for
the additional length is that the amended spacers
contain the residue of ancestral genes and represent
highly eroded pseudogenes. The same length
increase is found in Buchnera spacers located
between regions of synteny with E. coli. These could
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be degraded pseudogenes formed during
chromosome rearrangements. Similar instances of
eroded pseudogenes can be observed in M. leprae,
based on comparisons with M. tuberculosis30. The
retention of such augmented functionless regions in
a highly reduced genome suggests that the loss of
gene function is not strictly coupled with the loss
of DNA.

Persistence of DNA following loss of gene function
is also evident from analyses of bacterial genomes.
For example, the eight pseudogenes annotated in
Buchnera of Acyrthosiphon pisum are not appreciably
shorter than their functional counterparts in E. coli
(T-value = –0.447, P = 0.669). In one case, the cmk
pseudogene shares an identical 16-bp deletion in
Buchnera from A. pisum and in Buchnera from
Schizaphis graminum, which diverged at least
50 million years ago31. This implies that cmk has been
a pseudogene for at least that long, yet there is little
other reduction in the length of this pseudogene in
either species. Other examples of ancient
pseudogenes occur in Buchnera from Diuraphis
noxia, in which trpEG pseudogenes are shared among
isolates from diverse geographic locations32. In
R. prowazekii, only 76% of the genome encodes
proteins (Table 1), and at least 12 pseudogenes have
been retained for long periods within this clade of
intracellular pathogens21,33. Other examples of
persistent pseudogenes are known from the
spirochete Borrelia burgdorferi34, Neisseria
meningitidis35 and M. leprae30.

A model for genome size evolution in bacteria

These observations, from analyses of complete
genomic sequences, suggest a simple model for the
evolution of bacterial genome size based on the
outcome of several opposing forces (Fig. 4). Deletional
bias and genetic drift cause genomes to contract,
whereas selection on gene function causes genomes to
maintain DNA. Accretions in genome size depend on
either duplications or the acquisition of exogenous
DNA, but these events are only effective if the new
genes confer some benefit (or if the DNA is somehow
parasitic). Small-genome bacteria, by being
sequestered in hosts, might have a reduced
opportunity for gene uptake, and they might lose

pathways required to incorporate exogenous DNA.
Thus, the larger genome size of free-living bacteria
could reflect more-frequent acquisition of new genes,
greater need for metabolic versatility or more-
effective selection for the maintenance of weakly
beneficial genes.

The loss of DNA occurs both through large
deletions spanning multiple loci23,36 and through
small deletions of one or a few nucleotides
(Fig. 2)20,21. The relative importance of these two
routes will vary among bacterial lineages. On the
basis of comparisons of Buchnera to free-living
relatives, early stages in genome reduction involved
large deletions spanning as many as 50 genes23. By
contrast, modern Buchnera have stable genome
sizes37, presumably because large deletions,
involving loss of genes, are lethal. The final reduction
of spacers will be slow, because most large deletions
will overlap coding or promoter regions and thus be
selected against, and small deletions remove DNA
only gradually.

Not all of the processes depicted in Fig. 4 occur at
the same rates, and some bacterial genomes might
be in the process of increasing or decreasing in size.
In particular, the transition to intracellular life
probably imposes an abrupt decrease in the
effectiveness of selection on many genes, whereas
drift and deletional bias remove nonfunctional DNA
at low rates. The differences among organisms in
spacer length and the persistence of recognizable
pseudogenes will reflect the time elapsed since the
lifestyle shifts occurred and the frequency of
deletion events. Thus, immediately following a
change to a lifestyle in which selection is less
effective in preserving gene function, many
pseudogenes will appear. The unusually large
proportion of pseudogenes in M. leprae30 could
represent an early stage in the process of genome
reduction. Buchnera, Mycoplasma genitalium and
R. prowazekii, which have relatively short spacers
and fewer pseudogenes, might be at more-advanced
stages in this process. Thus, at any point through
evolutionary time, deletional bias appears to be a
major force shaping bacterial genomes, perhaps
explaining their small size and tight packing of 
their genes.

Table 2. Spacer lengths in Buchnera (A. pisum)

Spacers within Buchnera Number Mean length (bp)

Ancient spacersa Buchnera 270 55.1

E. coli

Amended spacersb Buchnera 165 188.0

E. coli

Spacers at termini of syntenic Buchnera 162 188.4
regionsc

E. coli
aSpacers with the same flanking genes in both Buchnera and Escherichia coli. 
bSpacers with flanking genes that conserve ancestral order and that occur where one or more additional genes are present in E. coli. 
cSpacers at the ends of rearranged fragments. 
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