The String-to-String Correction Problem

ROBERT A. WAGNER
Vanderbilt University, Nashville, Tennessee
AND
MICHAEL J. FISCHER
Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

The string-to-string correction problem is to determine the distance between two strings as measured by the minimum cost sequence of "edit operations" needed to change the one string into the other. The edit operations investigated allow changing one symbol of a string into another single symbol, deleting one symbol from a string, or inserting a single symbol into a string. An algorithm is presented which solves this problem in time proportional to the product of the lengths of the two strings. Possible applications are to the problems of automatic spelling correction and determining the longest subsequence of characters common to two strings.

key words and phrases: string correction, editing, string modification, correction, spelling correction, longest common subsequence

CR Categories: $3.79,4.12,4.22,5.23,5.25$

1. Introduction

Morgan [1] considers four editing operations which can be applied to keypunched words in order to undo certain common keypunch errors. His paper describes a technique for finding those language tokens (usually complier key words, such as BEGIN or WRITE) which lie a distance of one edit operation away from the given, presumably incorrect, input token.

Based on three of Morgan's operations, we define a general notion of "distance" between two strings and present an algorithm for computing the distance in time proportional to the product of the lengths of the strings. The operations we consider are: (1) changing one character to another single character; (2) deleting one character from the given string; (3) inserting a single character into the given string.

This notion of edit distance and the efficient algorithm for computing it have obvious applications to problems of spelling correction and may be useful in choosing mutually distant key words in the design of a programming language. The algorithm may also be

Copyright (C) 1974, Association for Computing Machinery, Inc. General permission to republish, but not for profit, all or part of this material is granted provided that ACM's copyright notice is given and that reference is made to the publication, to its date of issue, and to the fact that reprinting privileges were granted by permission of the Association for Computing Machinery.

The work reported herein was supported in part by the National Science Foundation under Grants GJ-28176 to Cornell University, GJ-33014 to Vanderbilt University, and GJ-34671 to MIT Project MAC, and in part by the Artificial Intelligence Laboratory, an MIT research program sponsored by the Advanced Research Projects Agency, Department of Defense, under Office of Naval Research contract number N00014-70-A-0362-0003.

Authors' addresses: Robert A. Wagner, Systems and Information Science Department, Vanderbilt University, Nashville, TN 37235; Michael J. Fischer, Project MAC, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, MA 02139.
used, as a special case, to find the longest subsequence of characters common to two strings.

2. Edit Distance

Let A be a finite string (or sequence) of characters (or symbols). $A\langle i\rangle$ is the i th character of string $A ; A\langle i: j\rangle$ is the i th through j th characters (inclusive) of A (so $A\langle i: j\rangle=A\langle i\rangle$ $A\langle i+1\rangle \cdots A\langle j\rangle)$, and $A\langle i: j\rangle=\Lambda$, the null string, if $i>j .|A|$ denotes the length (number of characters) of string A.

An edit operation is a pair $(a, b) \neq(\Lambda, \Lambda)$ of strings of length less than or equal to 1 and is usually written $a \rightarrow b$. String B results from the application of the operation $a \rightarrow b$ to string A, written $A \Rightarrow B$ via $a \rightarrow b$, if $A=\sigma a \tau$ and $B=\sigma b \tau$ for some strings σ and τ. (Readers familiar with for mal language theory will note the similarity between an edit operation and a production of a grammar.) We call $a \rightarrow b$ a change operation if $a \neq \Lambda$ and $b \neq \Lambda$; a delete operation if $b=\Lambda$; and an insert operation if $a=\Lambda$.

Let S be a sequence $s_{1}, s_{2}, \cdots, s_{m}$ of edit operations (or edit sequence for short). An S-derivation from A to B is a sequence of strings $A_{0}, A_{1}, \cdots, A_{m}$ such that $A=A_{0}$, $B=A_{m}$, and $A_{i-1} \Rightarrow A_{i}$ via s_{i} for $1 \leq i \leq m$. We say S takes A to B if there is some S-derivation from A to B.

Now let γ be an arbitrary cost function which assigns to each edit operation $a \rightarrow b$ a nonnegative real number $\gamma(a \rightarrow b)$. Extend γ to a sequence of edit operations $S=s_{1}$, s_{2}, \cdots, s_{m} by letting $\gamma(S)=\sum_{i=1}^{m} \gamma\left(s_{i}\right)$. (If $m=0$, we define $\gamma(S)=0$.) We now let the edit distance $\delta(A, B)$ from string A to string B be the minimum cost of all sequences of edit operations which transform A into B. Formally, $\delta(A, B)=\min \{\gamma(S) \mid S$ is an edit sequence taking A to $B\}$.

We will assume henceforth that $\gamma(a \rightarrow b)=\delta(a, b)$ for all edit operations $a \rightarrow b$. (Equivalently, we may assume that $\gamma(a \rightarrow a)=0$ and $\gamma(a \rightarrow b)+\gamma(b \rightarrow c) \geq$ $\gamma(a \rightarrow c)$.) This leads to no loss of generality with respect to the class of distance functions we are considering, for if δ is the distance function associated with a cost function γ, it is easily verified that δ is also the distance function associated with the cost function $\boldsymbol{\gamma}^{\prime}$ defined by $\gamma^{\prime}(a \rightarrow b)=\delta(a, b)$, and γ^{\prime} has the desired property.

Note that if δ were symmetric and strictly positive on each edit operation $a \rightarrow b$ for which $a \neq b$, then γ would be a metric on the space of all strings-hence our use of the term "distance." We remark also that cost functions which depend on the particular characters affected by an edit operation might be useful in spelling correction, where for example because of the conventional keyboard arrangement it may be far more likely that a character " A " be mistyped as an " S " than as a " Y."

3. Traces

To simplify our problem of finding the edit distance between two strings A and B, we define a cost function on some structures called traces and show that traces have the properties:
(P1) for every trace T from A to B, there is an edit sequence S taking A to B such that $\gamma(S)=\operatorname{cost}(\mathrm{T})$;
(P2) for every edit sequence S taking A to B, there is a trace T from A to B such that $\operatorname{cost}(T) \leq \gamma(S)$.
Thus, $\delta(A, B)$ is equal to the minimum cost trace from A to B, so we will be able to confine our attention to finding minimum cost traces.

Intuitively, a trace is a description of how an edit sequence S transforms A into B but ignoring the order in which things happen and any redundancy in S.

Consider the diagram:
String A:
String B:

A line in this diagram joining character position i of A to position j of B means that $B\langle j\rangle$ is derived from $A\langle i\rangle$, either directly if $A\langle i\rangle=B\langle j\rangle$ and S leaves $A\langle i\rangle$ unchanged or indirectly if S applies one or more change operations to $A\langle i\rangle$. Certain character positions of A are untouched by lines in our diagram; these positions represent characters of A deleted by S (either directly or perhaps as the result of one or more change operations followed by a delete). Similarly, certain positions of B are untouched by lines; these positions represent characters inserted into A by S.

Formally, a trace from A to B (or trace when the strings A and B are understood) is a triple (T, A, B), where T is any set of ordered pairs of integers (i, j) satisfying:
(1) $1 \leq i \leq|A|$ and $1 \leq j \leq|B|$;
(2) for any two distinct pairs $\left(i_{1}, j_{1}\right)$ and (i_{2}, j_{2}) in T, (a) $i_{1} \neq i_{2}$ and $j_{1} \neq j_{2}$; (b) $i_{1}<i_{2}$ iff $j_{1}<j_{2}$.

A pair (i, j) describes a line joining position i of A to position j of B, and we say (i, j) touches those positions. Condition (1) ensures that our lines actually touch character positions of the respective strings. Condition (2a) ensures that each character position of either string is touched by at most one line; condition (2b) ensures that no two lines cross. Where there is no confusion, we will not distinguish between the triple (T, A, B) and the set of pairs T.
Let T be a trace from A to B. Let I and J be the sets of positions in A and B respectively not touched by any line in T. We define the cost of T :

$$
\operatorname{cost}(T)=\sum_{(i, j\rangle \in T} \gamma(A\langle i\rangle \rightarrow B\langle j\rangle)+\sum_{i \in I} \gamma(A\langle i\rangle \rightarrow \Lambda)+\sum_{j \in J} \gamma(\Lambda \rightarrow B\langle j\rangle)
$$

Thus, the cost of T is just the cost of the edit sequence S taking A to B which consists of a change instruction $A\langle i\rangle \rightarrow B\langle j\rangle$ for each pair $(i, j) \in T$, a delete instruction $A\langle i\rangle \rightarrow \Lambda$ for every position i in A not touched by a line in T, and an insert instruction $\Lambda \rightarrow B\langle j\rangle$ for every position j in B not touched by a line in T. Hence, property (P1) of traces follows.

Traces may be composed. Let T_{1} be a trace from A to B and let T_{2} be a trace from B to C. It is readily verified that $T=T_{1} \circ T_{2}$ is a trace from A to C, where \circ denotes ordinary composition of relations. ${ }^{1}$

Lemma 1. $\operatorname{Cost}\left(T_{1} \circ T_{2}\right) \leq \operatorname{cost}\left(T_{1}\right)+\operatorname{cost}\left(T_{2}\right)$, where T_{1} is a trace from A to B and T_{2} is a trace from B to C.

The proof relies on our assumption that $\gamma(a \rightarrow b)=\delta(a, b)$ and is omitted.
To verify that property (P2) holds for traces, we show by induction on m that if $S=s_{1}, s_{2}, \cdots, s_{m}$ is a sequence of edit operations and $\left(A_{0}, A_{1}, \cdots, A_{m}\right)$ is an S derivation (from A_{0} to A_{m}), then there is a trace T from A_{0} to A_{m} such that $\operatorname{cost}(T) \leq$ $\gamma(S)$.

If $m=0$, let $T=\left\{(i, i)\left|1 \leq i \leq\left|A_{0}\right|\right\}\right.$ be a trace from A_{0} to A_{0}. Then $\operatorname{cost}(T)=$ $0=\gamma(S)$ and the induction hypothesis holds.

If $m>0$, by induction, there is a trace T_{1} from A_{0} to A_{m-1} such that $\operatorname{cost}\left(T_{1}\right) \leq$ $\gamma\left(s_{1}, \cdots, s_{m-1}\right) . A_{m-1} \Rightarrow A_{m}$ via $s_{m}=a \rightarrow b$, so there are strings σ and τ such that $A_{m-1}=\sigma a \tau$ and $A_{m}=\sigma b \tau$. Let T_{2} be the trace from A_{m-1} to A_{m} defined by

$$
T_{2}=\left\{(i , i) | 1 \leq i \leq | \sigma | \} \cup \left\{(i, i+d)| | \sigma a\left|+1 \leq i \leq\left|A_{m-1}\right|\right\} \cup L,\right.\right.
$$

where $d=|b|-|a| \in\{-1,0,1\}$ and

$$
L= \begin{cases}\{(|\sigma|+1,|\sigma|+1)\} & \text { if } s_{m} \text { is a change instruction; } \\ \text { otherwise. }\end{cases}
$$

Clearly, T_{2} is a trace and $\operatorname{cost}\left(T_{2}\right)=\gamma(a \rightarrow b)=\gamma\left(s_{m}\right)$.
Now let $T=T_{1} \circ T_{2} . T$ is a trace from A_{0} to A_{m}. By Lemma 1,

$$
\operatorname{cost}(T) \leq \operatorname{cost}\left(T_{1}\right)+\operatorname{cost}\left(T_{2}\right) \leq \gamma\left(s_{1}, \cdots, s_{m-1}\right)+\gamma\left(s_{m}\right)=\gamma(S)
$$

so property (P2) holds for S. By induction, it holds for all sequences S.

[^0]From properties (P1) and (P2) of traces, we have:
Theorem 1. $\quad \delta(A, B)=\min \{\operatorname{cost}(T) \mid T$ is a trace from A to $B\}$.

4. Computation of Edit Distance

Now return to the diagrammatic representation of a trace T from A to B. Let $A=A_{1} A_{2}$, $B=B_{1} B_{2}$, and suppose no line of T connects a character of A_{i} to a character of B_{j} for $i \neq j, i, j \in\{1,2\}$. Then a trace (T, A, B) can be split into two traces (T_{1}, A_{1}, B_{1}) and (T_{2}, A_{2}, B_{2}) as illustrated.

Furthermore, $\operatorname{cost}(T)=\operatorname{cost}\left(T_{1}\right)+\operatorname{cost}\left(T_{2}\right)$, so if T is a least cost trace from A to B, then T_{i} is a least cost trace from A_{i} to $B_{i}, i \in\{1,2\}$.

Every trace T from A to B can in fact be split into two traces T_{1} and T_{2} as above such that the lengths of A_{2} and B_{2} are each at most one but they are not both zero. This is the key idea for the following theorem, upon which the edit distance algorithm is based.

Notation. Let A and B be strings. Define $A(i)=A\langle 1: i\rangle, B(j)=B\langle\mathbf{1}: j\rangle$, and $D(i, j)=\delta(A(i), B(j)), 0 \leq i \leq|A|, 0 \leq j \leq|B|$. We note that by Theorem. 1, $D(i, j)$ is also the cost of the least cost trace from $A(i)$ to $B(j)$.

Theorem 2.

$$
\begin{gathered}
D(i, j)=\min \{D(i-1, j-1)+\gamma(A\langle i\rangle \rightarrow B\langle j\rangle), \\
D(i-1, j)+\gamma(A\langle i\rangle \rightarrow \Lambda), \\
D(i, j-1)+\gamma(\Lambda \rightarrow B\langle j\rangle)\}
\end{gathered}
$$

for all $i, j, 1 \leq i \leq|A|, 1 \leq j \leq|B|$.
Proof. Let T be a least cost trace from $A(i)$ to $B(j)$. If $A\langle i\rangle$ and $B\langle j\rangle$ are both touched by lines in T, they must both be touched by the same line, since otherwise these lines in T would cross. Then at least one of the following three cases must hold:

Case 1. $A\langle i\rangle$ and $B\langle j\rangle$ are joined by a line of T (i.e. $(i, j) \in T)$. Then the cost of T is $m_{1}=D(i-1, j-1)+\gamma(A\langle i\rangle \rightarrow B\langle j\rangle)$, corresponding to the cost of transforming $A(i-1)$ to $B(j-1)$ plus the cost of changing $A\langle i\rangle$ to $B\langle j\rangle$.

Case 2. $A\langle i\rangle$ is not touched by any line in T. Then the cost of T is $m_{2}=D(i-1, j)+$ $\gamma(A\langle i\rangle \rightarrow \Lambda)$, corresponding to the costs of transforming $A(i-1)$ to $B(j)$ and deleting $A\langle i\rangle$.

Case 3. $B\langle j\rangle$ is not touched by any line in T. Then the cost of T is $m_{3}=D(i, j-1)+$ $\gamma(\Lambda \rightarrow B\langle j\rangle)$, corresponding to the costs of transforming $A(i)$ to $B(j-1)$ and inserting character $B\langle j\rangle$.

Since one of the three cases above must hold and $D(i, j)$ is to be a minimum, $D(i, j)=$ $\min \left(m_{1}, m_{2}, m_{3}\right)$. \square

Theorem 3. $D(0,0)=0 ; D(i, 0)=\sum_{r=1}^{i} \gamma(A\langle r\rangle \rightarrow \Lambda)$; and $D(0, j)=$ $\sum_{r=1}^{j} \gamma(\Lambda \rightarrow B(r)), 1 \leq i \leq|A|$ and $1 \leq j \leq|B|$.

Proof. The only (and hence least cost) trace from $A(i)$ to $B(j)$ when either i or $j=0$ is \varnothing, and hence no lines touch $A(i)$ or $B(j)$. The theorem follows immediately from the definition of the cost of a trace.

Theorems 2 and 3 justify that Algorithm X (below) correctly computes $D(i, j)$ for $0 \leq i \leq|A|$ and $0 \leq j \leq|B|$.

AGLORITHM X

1. $D[0,0]:=0$;
2. for $i:=1$ to $|A|$ do $D[i, 0]:=D[i-1,0]+\gamma(A\langle i\rangle \rightarrow \Lambda)$;
```
for \(j:=1\) to \(|B|\) do \(D[0, j]:=D[0, j-1]+\gamma(\Lambda \rightarrow B\langle j\rangle)\);
for \(i:=1\) to \(|A|\) do
    for \(j:=1\) to \(|B|\) do begin
            \(m_{1}:=D[i-1, j-1]+\gamma(A\langle i\rangle \rightarrow B\langle j\rangle) ;\)
            \(m_{2}:=D[i-1, j]+\gamma(A\langle i\rangle \rightarrow \Lambda) ;\)
            \(m_{3}:=D[i, j-1]+\gamma(\Lambda \rightarrow B\langle j\rangle)\);
            \(D[i, j]:=\min \left(m_{1}, m_{2}, m_{3}\right)\);
            end;
```

By inspection, we see that the total amount of time used by Algorithm X is proportional to the number of assignment statements executed (exclusive of those implicit in the for-loops). This number is exactly $1+|A|+|B|+4 \times|A| \times|B|$, so the total time is $O(|A| \times|B|)$.

If an actual trace T from A to B of least cost is desired, Algorithm Y will print the pairs in T using only the information stored in array D by Algorithm X.

ALGORITHM Y

```
\(i:=|A| ; j:=|B| ;\)
while \((i \neq 0 \& j \neq 0)\) do
    if \(D[i, j]=D[i-1, j]+\gamma(A\langle i\rangle \rightarrow \Lambda)\) then \(i:=i-1\);
    else if \(D[i, j]=D[i, j-1]+\gamma(\Lambda \rightarrow B\langle j\rangle)\) then \(j:=j-1\);
    else begin
        print ( \((i, j)\) );
        \(i:=i-1 ; j:=j-1\);
        end;
```

In order to prove that Algorithm Y works correctly, we consider for every pair of natural numbers I and J the behavior of the algorithm when started at step 2 with variables i and j initialized to I and J respectively. Let $T(I, J)$ be the set of pairs printed by the algorithm if the execution eventually terminates, and $T(I, J)$ is undefined otherwise.

Theorem 4. If $0 \leq I \leq|A|$ and $0 \leq J \leq|B|$, then $T(I, J)$ is defined. $\mathbf{T}=(T(I, J)$, $A(I), B(J))$ is a trace, and cost $(\mathbf{T})=D(I, J)$.

Proof. We proceed by induction on the sum $I+J$.
The theorem is vacuously true for $I+J<0$.
Now let $r \geq 0$ and suppose the theorem holds for all I^{\prime}, J^{\prime} such that $I^{\prime}+J^{\prime}<r$. Let $I+J=r$. If either I or J is 0 , step 2 terminates immediately and $T(I, J)=\varnothing$ is the only trace from $A(I)$ to $B(J)$; hence its cost is minimal. If neither I nor J is zero, we have three cases:

Case 1. The test in step 3 succeeds. Then $D(I, J)=D(I-1, J)+\gamma(A\langle I\rangle \rightarrow \Lambda)$. The algorithm then proceeds by decrementing i and returning to step 2 . Variable i now has the value $I-1$, and j is unchanged. By induction, $T(I-1, J)$ is defined, and $\mathbf{T}=(T(I-1, J), A(I-1), B(J))$ is a trace of $\operatorname{cost} D(I-1, J)$. No output was produced before returning to step 2, so $T(I, J)=T(I-1, J)$, and $\mathbf{T}^{\prime}=(T(I, J)$, $A(I), B(J))$ is a trace. Then

$$
\operatorname{cost}\left(\mathbf{T}^{\prime}\right)=\operatorname{cost}(\mathbf{T})+\gamma(A\langle I\rangle \rightarrow \Lambda)=D(I-1, J)+\gamma(A\langle I\rangle \rightarrow \Lambda)=D(I, J)
$$

Case 2. The test in step 3 fails but the one in step 4 succeeds. The proof for this case is exactly analogous to case 1 .

Case 3. The tests in steps 3 and 4 both fail. Hence $D(I, J) \neq D(I-1, J)+\gamma(A\langle I\rangle \rightarrow$ $\Lambda)$ and $D(I, J) \neq D(I, J-1)+\gamma(\Lambda \rightarrow B\langle J\rangle)$. By Theorem 2 , it must be the case that $D(I, J)=D(I-1, J-1)+\gamma(A\langle I\rangle \rightarrow B\langle J\rangle)$.

The block from steps 5-8 is then executed. This causes the pair (I, J) to be printed, and when step 2 is reentered, both i and j have been decremented. By induction, $T(I-1$, $J-1)$ is defined, and $\mathbf{T}=(T(I-1, J-1), A(I-1), B(I-1))$ is a trace of cost $D(I-1, J-1)$. Hence, $T(I, J)=\{(I, J)\} \cup T(I-1, J-1)$, and $\mathbf{T}^{\prime}=(T(I, J)$,
$A(I), B(J))$ is a trace. Then

$$
\begin{aligned}
\operatorname{cost}\left(\mathbf{T}^{\prime}\right)=\operatorname{cost}(\mathbf{T})+\gamma(A\langle I\rangle \rightarrow B\langle J\rangle)=D(I-1, J-1)+\gamma(A\langle I\rangle & \rightarrow B\langle J\rangle) \\
& =D(I, J) .
\end{aligned}
$$

Hence, in all three cases, the theorem holds for I and J. By induction, the theorem holds for all I and J.

Algorithm Y when started at the beginning first enters step 2 with $i=|A|$ and $j=|B|$. By Theorem 4, it eventually terminates and prints the pairs in $T(|A|,|B|)$, which is a least cost trace from A to B as desired.
We note that in all three cases of the proof of Theorem 4, either i or j (or both) is decremented, and Algorithm Y terminates when either reaches 0 . Hence, the loop is executed at most $|A|+|B|$ times, so the total running time of Algorithm Y is O $(|A|+|B|)$.

5. Longest Common Subsequences

Let U and V be strings. U is a subsequence of V if there exist integers $1 \leq r_{1}<r_{2}<\cdots$ $<r_{n} \leq|V|$ such that $U\langle i\rangle=V\left\langle r_{i}\right\rangle, 1 \leq i \leq n=|U|$. Given two strings A and B, U is a common subsequence of A and B if U is a subsequence of both A and B.

Let $\rho(A, B)$ be the length of the longest common subsequence of A and B. It is immediate from the definition of a trace that $\rho(A, B)$ is also the maximum number of pairs (i, j) in any trace from A to B for which $A\langle i\rangle=B\langle j\rangle$. Let T be such a trace.
Define γ so that the cost of an insert or a delete operation is 1 , and let the cost of a change operation $a \rightarrow b$ be 0 if $a=b$ and 2 if $a \neq b$. Under this cost assignment, $\operatorname{cost}(T)=|A|+|B|-2 \rho(A, B) . T$ is a least cost trace from A to B, so $\operatorname{cost}(T)=\delta(A, B)$. Hence, $\rho(A, B)=(|A|+|B|-\delta(A, B)) / 2$ can be computed in time $O(|A| \times|B|)$ using Algorithm X . The longest common subsequence itself can be found easily from T which in turn can be obtained using Algorithm Y.
acknowledgment. The authors are grateful to M. Paterson and V. Pratt for many helpful discussions and to A. Meyer for a critical reading of a draft of this paper.

REFERENCE

1. Morgan, H. L. Spelling correction in systems programs. Comm. ACM 13, 2 (Feb. 1970), 90-94.

Contributions to the Journal of the Association for Computing Machinery

The Journal of the Association for Computing Machinery is a publication medium for original research papers of lasting value in the computer field. Submissions, which should be relevant to the interests of the Association, are judged primarily on originality and relevance. Contributions should conform to generally accepted practices for scientific papers with respect to organization and style of writing.

Papers may be sent to any area editor or to the editor-in-chief. Unless otherwise specified, they will be considered only for publication in the Journal. Until appearance or until final action, authors are expected to keep the editor informed of any changes of address.

Format. Manuscripts should be submitted in triplicate (the original on bond-weight paper) under cover of a submittal letter signed by the author. The text should be double spaced on one side of the paper. Typed manuscripts are preferred, but good reproductions of internal reports are acceptable (if text runs on both sides of pages, submit four copies). Authors' names should be given without titles or degrees. The name and address of the organization for which the work was carried out should be given. If the paper has previously been presented at a technical meeting, this fact, giving the date and sponsoring society, should appear in a footnote on the first page. Acknowledgments of funding sources should also be given in a footnote on the first page.

The usefulness of articles published in ACM periodicals is greatly enhanced when each paper includes information which insures proper indexing, classification, retrieval, and dissemination. To this effect authors should include in the manuscript:
(a) descriptive title;
(b) author names-with addresses in a footnote;
(c) informative abstract;
(d) content indicators of two types:
(i) appropriate key words and key phrases,
(ii) category numbers from Computing Reviews (CR);
(e) citations to the relevant literature.

The following suggestions may be useful in preparing this information.
Descriptive Title. Use a specific and informative title to tell accurately and clearly what the document is about. Choose title terms as highly specific as content and emphasis of the paper permit. Typically, a title might contain six to twelve words. Avoid special symbols and formulas in titles unless essential to indicate content. "Cute" or "clever" titles are unhelpful and should not be used.

Informative Abstract. The abstract should consist of short, direct, and complete sentences. A reading of the abstract should serve in some cases as a substitute for reading the paper itself. For this reason, the abstract should be informative. Typically, its length might be $150-200$ words. The abstract should state the objectives of the work, summarize the results, and give the principal conclusions and recommendations. It should state clearly whether the focus is on theoretical developments or on practical questions, and whether subject matter or method are emphasized. The title need not be repeated. Work planned but not done should not be described in the abstract. Because abstracts are extracted from a paper and used separately, one should not use the first person, not display mathematics, and not use citation reference numbers. Try to avoid starting with the words "This paper . . ."

Content Indicators. Two types of content indicators are to be assigned: category numbers from the classification schedule used by Computing Reviews, and free choice key words and key phrases consisting of English language words. The latest $C R$ classification may be found in any current CR issue, or in the Journal of the ACM, July 1973 issue.

Use as many category numbers as may be applicable. If possible, specify your interpretation of the "miscellaneous" or "general" categories if these are used. The following category numbers might, for example, be applicable to a manuscript dealing with sorting techniques: 3.74 (searching), 4.49 (miscellaneous utility programs), 5.31 (sorting).

In listing key words and key phrases to be used for indexing, put yourself in the place of the person who is looking for information in your index. If you have a technical thesaurus available, such as the IFIP-ICC Vocabulary of Information Processing [North-Holland Publishing Co., Amsterdam], consult it. Also, for helpful suggestions for alternate key words consult the citations to the relevant literature. The key words and key phrases used should be as precise as possible and hopefully unambiguous in their particular context. Typically ten to fifteen words or phrases might be used. The following additional guidelines may be of help:
(a) use important terms from the title; include also their synonyms, related words, and words of higher or lower generic rank;
(b) use English nouns, or noun-noun and noun-adjective combinations; do not use prepositions; do not use sequences of more than three words; do not use hyphens except if the hyphenated parts are always treated as a single unit;
(c) use specific terms whose meaning is generally accepted in the computer field; do not use broad catchall terms (such as "computer," "automatic," "machine," "system," "discussion," "description"); do not use private terms or acronyms that may not be generally known;
(d) do not use negative terms stressing what your paper does not do; emphasize the positive content and contribution.

Citations. (1) References to items in periodicals: These should take the form: author, title, journal, volume number, date, pages. For authors, last names are given first, even for multiple authors; likewise for editors, with the name followed by: (Ed.). The author's name always ends with a period, either the period which is the abbreviation for his initial, or a period for the purpose. The title has only the first word and proper names (or their derivatives) starting with capital letters, and it ends with a period. The date is given in parentheses. Example:

Jones, R.W., Marks, F.W., and Anthony, T. Programming routines for Boolean func-
tions. J. ACM 5 (May 1960), 5-19.
(2) References to reports or proceedings: Author(s) name(s) and title (same style as above), report number, source including date and pages.
(3) References to books: Author(s)-same style as to periodicals. Title-all principal words start with a capital letter, and the title is underlined so that it will be set in italics. Publisher, city, year. Page or chapter references follow the year.
(4) In lengthy bibliographies, entries must be arranged alphabetically according to authors' or editors' names, or publishing organizations for items to which no names can be attached.

Figures. Diagrams should be on smooth white paper or drafting linen. Lettering should be done professionally with a LeRoy ruler (or, if necessary, in clear, black typing). Photographs should be glossy prints. The author's name and the figure number should appear on the back of each figure. On publication, figures will be reduced to $43 / 4$ inches in width; maximum allowable printed height will be $71 / 2$ inches. In planning, care should be taken to ensure that the legends and labels within the figure will be large enough to be readable after they are reduced by the same percentage as is required to make the whole figure fit on the page.

Mathematical Expressions. It will considerably lower the cost of composing type if you will:
(1) Avoid the use of buit up fractions; i.e. instead of $\frac{1}{n}$, use the negative exponent form n^{-1}; or instead of $\frac{1}{(1+n)^{2}}$, use $(1+n)^{-2}$; or instead of $\frac{1}{n}$, use $1 / n$. If not avoided by the author, built up fractions will be converted to equivalent expressions on the line when the paper is marked for the printer.
(2) Avoid the use of small-type mathematical expressions centered above or below arrows. If possible, try to use an alternative format.
(3) In the exponential function, avoid exponents having more than one or two characters; i.e. instead of $e^{x^{2}+y^{2}}$, use $\exp \left(x^{2}+y^{2}\right)$.
(4) Avoid the use of reference numbers for equations that are not subsequently referred to in the paper. The cost will be reduced if you will run the mathematical equations and other expressions in with the text (rather than displaying each on a separate line). In the Journal, the 5 -inch wide type line makes it possible to accommodate long mathematical expressions on one line. Authors must expect that when accepted papers are marked for the printer, "excess" equation reference numbers will be deleted and equations will be run in with text.
(5) Show at the start what your underscored letter symbols indicate: italics, boldface (as in Algol), or typeset underscores; try to avoid the last as typeset underscores often require hand composition and opening up lines, and are thus expensive. In vector notations, indicate which letters or notations, if any, (i.e. $\stackrel{\widehat{x}}{ }$) may be set in boldface type.

Copyright. Published articles are copyrighted by the Association for Computing Machinery, Inc. If material submitted for publication has been previously copyrighted, appropriate releases should accompany submitted papers; copyright notices will be inserted when reprinting such material.

Page Charge. Author's institutions or corporations are requested to honor a page charge of $\$ 35.00$ per printed page or part thereof, to help defray the cost of publication. Charges are levied on all voluntarily contributed research papers, with 50 reprints of each paper furnished free of charge. Payment of page charges is not a condition of publication; editorial acceptance of a paper is unaffected by the payment or nonpayment.

[^0]: ${ }^{1} T_{1} \circ T_{2}=\left\{(i, j) \mid(i, k) \in T_{1}\right.$ and $(k, j) \in T_{2}$ for some $\left.k\right\}$.

